716 resultados para Saïmiri erythrocytes
Resumo:
It was analyzed if the effects of continuous incubation temperature deviations during the second half on the development of body, organs and hematological respiratory and energetic parameters differ between male and female from 30- and 60-week-old breeder eggs. From day 13, Cobb eggs were exposed to 36°C, 37.5°C, or 39°C. At 3, 6, 12, 24, 48 and 72 h after this change in the temperature and at hatch, red cells count, hematocrit, hemoglobin, mean corpuscular volume, plasma glucose level and body, liver and heart weights were evaluated. Independent of incubation temperature, sexes and breeder ages, mean corpuscular volume decreased and the other variables increased during late incubation. In 30-week-old breeder eggs, body weights and erythrocytic parameters were not influenced by temperature but liver and heart weights decreased increasing incubation temperature and glucose level increased at 36 and 39°C. In 60-week-old breeder eggs, males were heavier at hatching with incubation at 36°C and females had smaller body weights with incubation at 39°C. In both sexes, liver weight decreased and glucose concentration was higher at 36 and 39°C and heart weights and erythrocytes parameters were not influenced by temperature. Independent of breeder age, hatchability was lower at 39°C. The data show that high temperature from day 13 of incubation reduced more intensively the hatching success and caused cardiac hypoplasia in chicks from 30-week-old breeder eggs only, revealing for the first time that the susceptibility for ascites syndrome, by reduced heart development at hatching, is associated to a relationship between incubation temperature and egg size. © Asian Network for Scientific Information, 2012.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was aimed to verify if chicks from eggs injected with ascorbic acid and subjected to thermal stress would have higher immunity than chicks from incubation at thermoneutrality without injection of ascorbic acid. The parameters evaluated were temperature on oxygen saturation in hemoglobin, glucose, number of erythrocytes, hematocrit rate and number of hemoglobins of newly hatched male chicks, hatched from eggs injected with ascorbic acid (AA) and subjected to thermal stress during incubation. The experimental design was completely randomized in factorial scheme 5 (application levels of ascorbic acid) x 2 (incubation temperatures). The data were subjected to analysis of variance using the General Linear Model procedure (GLM) of SAS ®. For the parameters (number of erythrocytes, rate of hematrocit and values of hemoglobin), there was significant interaction (p <0.05) between treatments in egg and incubation temperatures. Analyzing the interactions for these parameters, it was observed that the application of 0% ascorbic acid in egg minimized the effect of heat stress when compared with treatment without injection. The application of ascorbic acid levels in eggs incubated under heat stress failed to maximize the immunity of newly hatched chicks. It is assumed that the increased liquid in the amniotic fluid, in those embryos injected with water, favored the lower heat conductance for these embryos, thus helping in their development in relation to immunity. Considering that hemoglobin is related to the transport of gases, these data suggest that increasing the concentration of AA solution inoculated may influence the respiratory rates of eggs.
Resumo:
The aim of this study was to evaluate the hemogram in cattle fed crude glycerin. 30 Nellore steers, were used for blood sampling, which were done each 28 days. The animals were confined for 103 days and were fed with five diets containing 0, 7.5, 15, 22.5 and 30% crude glycerin based on dry matter, formulated in a forage:concentrate ratio of 30:70. Corn silage was used as forage and the concentrate was composed by corn grain, soybean hulls, sunflower meal, glycerin, limestone, dicalcium phosphate and salt. The experimental design was a randomized block with five treatments. Orthogonal contrasts were used to determine the linear, quadratic, cubic effects and gliceryn treatments × the control one. There was no treatment effect (P>0,05) on blood concentrations of erythrocytes, hematocrit, basophils, eosinophils, band neutrophils and lymphocytes, but were linearly effect on the concentrations of platelets, hemoglobin and monocytes (P=0.009, P=0.001 and P=0.043, respectivelly), and cubic effect on the concentrations of total leukocytes and segmented neutrophils (P=0.008 and P=0.004, respectivelly). Diets for beef cattle, with forage:concentrate ratio of 30:70 added with crude glycerin promote changes in the erytrhogram and leucogram of these animals.
Resumo:
The effects of swim bladder injection with thioglycolate, Escherichia coli lipopolysaccharide (LPS) and heat-inactivated Aeromonas hydrophila were assessed on hematological responses in pacu, Piaractus mesopotamicus (Characidae). A quantitative assessment was done on erythrocytes, thrombocytes e leucocytes at 6, 24, and 48 h pos-injection of the inflammatory agents and compared with fish injected with saline solution (control). Fish injected with inactivated A. hydrophila showed a reduction of erythrocytes and hemoglobin, whereas the hematocrit increased 6 h pos-injection. The results show that thioglycolate and LPS also induced a reduction on hemoglobin and an increase on the hematocrit. The thrombocytes count decreased 6 h post A. hydrophila injection, whereas increased 48 hours post LPS injection. The leukocytes count increased after 6 h post A. hydrophila injection, while the lymphocytes and PAS-positive granular leukocytes (PAS-LG) count decreased after 24 h post injection. In fish injected with thioglycolate or with LPS showed an increase in the LG-PAS counts when compared to A. hydrophila or control groups. The monocytes count was not affected by the different inflammatory agents.
Resumo:
Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.
Resumo:
This study evaluated the haematological response of curimbas Prochilodus lineatus, naturally infected with Neoechinorhynchus curemai (Acanthocephala: Neoechinorhynchidae). Thirty-seven fish were captured in October 2010 from the Mogi Guaçu River, Porto Ferreira, SP, Brazil. Infected fish presented increased mean corpuscular volume of erythrocytes, and lower thrombocyte and higher monocyte counts than uninfected fish. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Resumo:
Ethnopharmacological relevance Dragon's blood is a dark-red sap produced by species from the genus Croton (Euphorbiaceae), which has been used as a famous traditional medicine since ancient times in many countries, with scarce data about its safe use in humans. In this research, we studied genotoxicity and clastogenicity of Croton palanostigma sap using the comet assay and micronucleus test in cells of mice submitted to acute treatment. Material and methods HPLC analysis was performed to identify the main components of the sap. The sap was administered by oral gavage at doses of 300 mg/kg, 1000 mg/kg and 2000 mg/kg. For the analysis, the comet assay was performed on the leukocytes and liver cells collected 24 h after treatment, and the micronucleus test (MN) on bone marrow cells. Cytotoxicity was assessed by scoring 200 consecutive polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). Results and conclusion The alkaloid taspine was the main compound indentified in the crude sap of Croton palanostigma. The results of the genotoxicity assessment show that all sap doses tested produced genotoxic effects in leukocytes and liver cells and also produced clastogenic/aneugenic effects in bone marrow cells of mice at the two higher doses tested. The PCE/NCE ratio indicated no cytotoxicity. The data obtained suggest caution in the use of Croton palanostigma sap by humans considering its risk of carcinogenesis. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Hemotropic mycoplasmas are bacteria that infect erythrocytes and cause subclinical infections to life-threatening disease. We describe hemotropic mycoplasma infection in a free-ranging black howler monkey (Alouatta caraya). This is the first molecular detection of a hemotropic mycoplasma in a nonhuman primate from Brazil. © Wildlife Disease Association 2013.
Resumo:
The best frequency of feeding for development of common carp fingerlings Cyprinus carpio was determined. Four hundred fish (4.88 ± 1.41 g and 6.72 ± 0.70 cm) were used, distributed in 20 tanks of 250 L each in completely randomized design with four treatments and five replicates. The four feeding strategies adopted were: providing feed once (T1), twice (T2), three (T3) and four times daily (T4) at the same amount being fractionated as described. At the end of 45 days of experiment were carried out measurements of the final weight (FW), final length (FL), weight gain (WG), feed conversion (FC), specific growth rate (SGR) and survivor (SR). It was evaluated the chemical composition of fish carcass: moisture (MT), crude protein (CP), lipids (LP) and ash (AS) and hematological analyzes performed such as erythrocyte (ER), hemoglobin (HG) and hematocrit (HT). There were significant statistical differences (P<0.01) for FW, FL, WG and SGR. For FC and SR there were no statistical differences (P>0.01). For the chemical composition the moisture, lipids and ash showed significant statistical differences (P>0.01), except only for protein (P>0.01) The hematological composition was not influenced by the feed frequency, it was not observed significant statistical difference (P>0.01) of erythrocytes, hemoglobin and hematocrit among dietary treatments. For common carp fingerlings, the provision of ration four times daily provided better final weight, final length, weight gain and specific growth rate without causing changes in the composition and hematological parameters of the fish.
Resumo:
The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..
Resumo:
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2 •-) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications. © © 2013 Elsevier Inc. All rights reserved.
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)