902 resultados para SURGICAL REMOVAL
Resumo:
Gracilaria lemaneiformis (Bory) Daws has been extensively cultivated as a source of commercial agar and the ecomaterials in Shenao Bay, Guangdong Province, Jiaozhou Bay, Shandong Province and other waters in China. This paper examines the in situ suspended farming of G. lemaneiformis using raft cultivation under different conditions and its effects on nutrient removal in the laboratory. The results showed that cultivated Gracilaria grew well in both Shenao Bay and Jiaozhou Bay. The biomass of Gracilaria increased from 50 to 775 g m(-1) (fresh weight) during 28 days, with special growth rate (SPG) 13.9% d(-1) under horizontal cultivation in Jiaozhou Bay. Light, temperature, nutrient supply, as well as cultivation treatments such as initial density, and depth of suspension seaweed were important to the growth of Gracilaria. The highest biomass production was observed in the horizontal culture condition (0.0 m) and 0.5-1.5 m deep layer in Jiaozhou Bay. However, the highest growth rate in Shenao Bay appeared under the lowest initial stocking density treatment. In the laboratory, the aquarium experiments (fish and seaweed culture systems) demonstrated that Gracilaria was able to remove inorganic nutrients effectively. The concentration of NH4+-N decreased by 85.53% and 69.45%, and the concentration of PO4-P decreased 65.97% and 26.74% in aquaria with Gracilaria after 23 days and 40 days, respectively. The results indicate that Gracilaria has the potential to remove excess nutrient from coastal areas, and the large-scale cultivation of G. lemaneiformis could be effective to control eutrophication in Chinese coastal waters. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Previous attempts to remove the brown tide organism, Aureococcus anophagefferens, through flocculation with clays have been unsuccessful, in spite of adopting concentrations and dispersal protocols that yielded excellent cell removal efficiency (RE>90%) with other species, so a study was planned to improve cell removal. Four modifications in clay preparation and dispersal were explored: 1) varying the salinity of the clay suspension; 2) mixing of the clay-cell suspension after clay addition; 3) varying of concentration of the initial clay stock; 4) pulsed loading of the clay slurry. The effect of salinity was dependent on the clay mineral type: phosphatic clay (IMC-P2) had a higher RE than kaolinite (H-DP) when seawater was used to disperse the clay, but H-DP removed cells more efficiently when suspended in distilled water prior to application. Mixing after dispersal approximately doubled RE for both clays compared to when the slurry was layered over the culture surface. Lowering the concentration of clay stock and pulsing the clay loading increased RE, regardless of mineral type. However, this increase was more apparent for clays dispersed in seawater than in distilled water. In general, application procedures that decrease the rate of self-aggregation among the clay particles and increase the collision frequency between clay particles and A. anophagefferens achieve higher cell removal efficiency. These empirical studies demonstrated that clays might be an important control option for the brown tide organism, given the proper attention to preparation, dispersal methods, environmental impacts, and the hydrodynamic properties of the system being treated. Implications for the treatment of brown tides in the field are discussed.
Resumo:
To investigate the ecological effect of macroalgae on de-eutrophication and depuration of mariculture seawater, the variation of dissolved inorganic nitrogen (DIN) and phosphate (DIP), the amount of Vibrio anguillarum, and total heterotrophic bacteria in Ulva clathrata culture, as well as on the algal surface, were investigated by artificially adding nutrients and V. anguillarum strain 65 from February to April 2006. The results indicated that U. clathrata not only had strong DIN and DIP removal capacities, but also showed a significant inhibitory effect on V. anguillarum, although not reducing the total heterotrophic bacteria. Vibrio anguillarum 65 dropped from 5 similar to 8 x 10(7) cfu mL(-1) to 10 cfu mL(-1) (clone-forming units per mL) in 10 g L-1 of fresh U. clathrata culture within 2 days; i.e., almost all of the Vibrios were efficiently eradicated from the algal culture system. Our results also showed that the inhibitory effect of U. clathrata on V. anguillarum strain 65 was both DIN- and DIP-dependent. Addition of DIN and DIP could enhance the inhibitory effects of the algae on the Vibrio, but did not reduce the total heterotrophic bacteria. Further studies showed that the culture suspension in which U. clathrata was pre-cultured for 24 h also had an inhibitory effect on V. anguillarum strain 65. Some unknown chemical substances, either released from U. clathrata or produced by the alga associated microorganisms, inhibited the proliferation of V. anguillarum 65.
Resumo:
Removal of NO by a continuous microwave discharge at atmospheric pressure with the addition of CH4 is reported. The conversion of NO to N-2 is approximately 80%, and the energy efficiency is up to 0.55 g-NO/kWh. The effects of CH4 addition and three discharge modes on NO conversion and energy efficiency are investigated. The dependence of NO conversion on experimental time is also observed.
Removal of endotoxin from human serum albumin solutions by hydrophobic and cationic charged membrane
Resumo:
A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane Fan be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced ro 0.027 eu/mL. Recovery of HSA was over 95%.
Resumo:
Boron removal is a critical issue in the production of drinking water and of ultra-pure water in the electronics industry. Boron rejection in a RO process is typically in the range of 40-60%. The objective of this study was to distinguish the factor contributing to enhanced boron rejection in reclamation of a spent rinse stream from a plating operation. The effects of different known components used in the feed on boron removal were investigated in the laboratory. The results indicated that glycolic acid and antifoulants could not individually enhance boron rejection in a RO process. A high boron rejection of 95% was achieved as the concentration of iron in the feed was 10 times higher than that of boron, which might be due to formation of a complex between iron oxide and boron. The finding was confirmed in a pilot study.
Resumo:
The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and Nacetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds.
Resumo:
The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.
Resumo:
OBJECTIVE: To determine the epidemiological characteristics of postoperative invasive Staphylococcus aureus infection following 4 types of major surgical procedures.design. Retrospective cohort study. SETTING: Eleven hospitals (9 community hospitals and 2 tertiary care hospitals) in North Carolina and Virginia. PATIENTS: Adults undergoing orthopedic, neurosurgical, cardiothoracic, and plastic surgical procedures. METHODS: We used previously validated, prospectively collected surgical surveillance data for surgical site infection and microbiological data for bloodstream infection. The study period was 2003 through 2006. We defined invasive S. aureus infection as either nonsuperficial incisional surgical site infection or bloodstream infection. Nonparametric bootstrapping was used to generate 95% confidence intervals (CIs). P values were generated using the Pearson chi2 test, Student t test, or Wilcoxon rank-sum test, as appropriate. RESULTS: In total, 81,267 patients underwent 96,455 procedures during the study period. The overall incidence of invasive S. aureus infection was 0.47 infections per 100 procedures (95% CI, 0.43-0.52); 227 (51%) of 446 infections were due to methicillin-resistant S.aureus. Invasive S. aureus infection was more common after cardiothoracic procedures (incidence, 0.79 infections per 100 procedures [95%CI, 0.62-0.97]) than after orthopedic procedures (0.37 infections per 100 procedures [95% CI, 0.32-0.42]), neurosurgical procedures (0.62 infections per 100 procedures [95% CI, 0.53-0.72]), or plastic surgical procedures (0.32 infections per 100 procedures [95% CI, 0.17-0.47]) (P < .001). Similarly, S. aureus bloodstream infection was most common after cardiothoracic procedures (incidence, 0.57 infections per 100 procedures [95% CI, 0.43-0.72]; P < .001, compared with other procedure types), comprising almost three-quarters of the invasive S. aureus infections after these procedures. The highest rate of surgical site infection was observed after neurosurgical procedures (incidence, 0.50 infections per 100 procedures [95% CI, 0.42-0.59]; P < .001, compared with other procedure types), comprising 80% of invasive S.aureus infections after these procedures. CONCLUSION: The frequency and type of postoperative invasive S. aureus infection varied significantly across procedure types. The highest risk procedures, such as cardiothoracic procedures, should be targeted for ongoing preventative interventions.