987 resultados para SPIN-RESONANCE SIGNAL
Resumo:
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.
Resumo:
Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.
Resumo:
PURPOSE Little data is available on noninvasive MRI-based assessment of renal function during upper urinary tract (UUT) obstruction. In this study, we determined whether functional multiparametric kidney MRI is able to monitor treatment response in acute unilateral UUT obstruction. MATERIAL AND METHODS Between 01/2008 and 01/2010, 18 patients with acute unilateral UUT obstruction due to calculi were prospectively enrolled to undergo kidney MRI with conventional, blood oxygen level-dependent (BOLD) and diffusion-weighted (DW) sequences on emergency admission and after release of obstruction. Functional imaging parameters of the obstructed and contralateral unobstructed kidneys derived from BOLD (apparent spin relaxation rate [R2*]) and DW (total apparent diffusion coefficient [ADCT], pure diffusion coefficient [ADCD] and perfusion fraction [FP]) sequences were assessed during acute UUT obstruction and after its release. RESULTS During acute obstruction, R2* and FP values were lower in the cortex (p=0.020 and p=0.031, respectively) and medulla (p=0.012 and p=0.190, respectively) of the obstructed compared to the contralateral unobstructed kidneys. After release of obstruction, R2* and FP values increased both in the cortex (p=0.016 and p=0.004, respectively) and medulla (p=0.071 and p=0.044, respectively) of the formerly obstructed kidneys to values similar to those found in the contralateral kidneys. ADCT and ADCD values did not significantly differ between obstructed and contralateral unobstructed kidneys during or after obstruction. CONCLUSIONS In our patients with acute unilateral UUT obstruction due to calculi, functional kidney MRI using BOLD and DW sequences allowed for the monitoring of pathophysiologic changes of obstructed kidneys during obstruction and after its release.
Resumo:
The aim of this study was to investigate if acute myocardial infarction can be detected by post-mortem cardiac magnetic resonance (PMMR) at an earlier stage than by traditional autopsy, i.e., within less than 4 h after onset of ischemia; and if so, to determine the characteristics of PMMR findings in early acute infarcts. Twenty-one ex vivo porcine hearts with acute myocardial infarction underwent T2-weighted cardiac PMMR imaging within 3 h of onset of iatrogenic ischemia. PMMR imaging findings were compared to macroscopic findings. Myocardial edema induced by ischemia and reperfusion was visible on PMMR in all cases. Typical findings of early acute ischemic injury on PMMR consist of a central zone of intermediate signal intensity bordered by a rim of increased signal intensity. Myocardial edema can be detected on cardiac PMMR within the first 3 h after the onset of ischemia in porcine hearts. The size of myocardial edema reflects the area of ischemic injury in early acute (per-acute) myocardial infarction. This study provides evidence that cardiac PMMR is able to detect acute myocardial infarcts at an earlier stage than traditional autopsy and routine histology.
Resumo:
The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser(155)) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser(155)Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (2A'(zz)) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher 2A'(zz) values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions.
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
Measurement of perfusion in longitudinal studies allows for the assessment of tissue integrity and the detection of subtle pathologies. In this work, the feasibility of measuring brain perfusion in rats with high spatial resolution using arterial spin labeling is reported. A flow-sensitive alternating recovery sequence, coupled with a balanced gradient fast imaging with steady-state precession readout section was used to minimize ghosting and geometric distortions, while achieving high signal-to-noise ratio. The quantitative imaging of perfusion using a single subtraction method was implemented to address the effects of variable transit delays between the labeling of spins and their arrival at the imaging slice. Studies in six rats at 7 T showed good perfusion contrast with minimal geometric distortion. The measured blood flow values of 152.5+/-6.3 ml/100 g per minute in gray matter and 72.3+/-14.0 ml/100 g per minute in white matter are in good agreement with previously reported values based on autoradiography, considered to be the gold standard.
Resumo:
Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^
Resumo:
OBJECTIVE The aim of this work is to investigate and compare cardiac proton density (PD) weighted fast field echo (FFE) post-mortem magnetic resonance (PMMR) imaging with standard cardiac PMMR imaging (T1-weighted and T2-weighted turbo spin-echo (TSE)), postmortem CT (PMCT) as well as autopsy. MATERIALS AND METHODS Two human cadavers sequentially underwent cardiac PMCT and PMMR imaging (PD-weighted FFE, T1-weighted and T2-weighted TSE) and autopsy. The cardiac PMMR images were compared to each other as well as to PMCT and autopsy findings. RESULTS For the first case, cardiac PMMR exhibited a focal region of low signal in PD-weighted FFE and T2-weighted TSE images, surrounded by a signal intense rim in the T2-weighted images. T1-weighted TSE and PMCT did not appear to identify any focal abnormality. Macroscopic inspection identified a blood clot; histology confirmed this to be a thrombus with an adhering myocardial infarction. In the second case, a myocardial rupture with heart tamponade was identified in all PMMR images, located at the anterior wall of the left ventricle; PMCT excluded additional ruptures. In PD-weighted FFE and T2-weighted TSE images, it occurred hypo-intense, while resulting in small clustered hyper-intense spots in T1-weighted TSE. Autopsy confirmed the PMMR and PMCT findings. CONCLUSIONS Presented initial results have shown PD-weighted FFE to be a valuable imaging sequence in addition to traditional T2-weighted TSE imaging for blood clots and myocardial haemorrhage with clearer contrast between affected and healthy myocardium.
Resumo:
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.
Resumo:
Aims To explore the impact of the functional severity of coronary artery stenosis on changes in myocardial oxygenation during pharmacological vasodilation, using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging and invasive fractional flow reserve (FFR). An FFR is considered a standard of reference for assessing haemodynamic relevance of coronary artery stenosis; yet, the relationship of FFR to changes in myocardial oxygenation during vasodilator stress and thus to an objective marker for ischaemia on the tissue level is not well understood. Methods and results We prospectively recruited 64 patients with suspected/known coronary artery disease undergoing invasive angiography. The FFR was performed in intermediate coronary artery stenosis. OS-CMR images were acquired using a T2*-sensitive sequence before and after adenosine-induced vasodilation, with myocardial segments matched to angiography. Very strict image quality criteria were defined to ensure the validity of results. The FFR was performed in 37 patients. Because of the strict image quality criteria, 41% of segments had to be excluded, leaving 29/64 patients for the blinded OS-CMR analysis. Coronary territories with an associated FFR of <0.80 showed a lack of increase in myocardial oxygenation [mean signal intensity (ΔSI) −0.49%; 95% confidence interval (CI) −3.78 to 2.78 vs. +7.30%; 95% CI 4.08 to 10.64; P < 0.001]. An FFR of <0.54 best predicted a complete lack of a vasodilator-induced oxygenation increase (sensitivity 71% and specificity 75%). An OS-CMR ΔSI <4.78% identified an FFR of <0.8 with a sensitivity of 86% and specificity of 92%. Conclusion An FFR of <0.80 is associated with a lack of an adenosine-inducible increase in oxygenation of the dependent coronary territory, while a complete lack of such an increase was best predicted by an FFR of <0.54. Further studies are warranted to identify clinically meaningful cut-off values for FFR measurements and to assess the utility of OS-CMR as an alternative clinical tool for assessing the functional relevance of coronary artery stenosis.
Resumo:
OBJECTIVE In contrast to conventional breast imaging techniques, one major diagnostic benefit of breast magnetic resonance imaging (MRI) is the simultaneous acquisition of morphologic and dynamic enhancement characteristics, which are based on angiogenesis and therefore provide insights into tumor pathophysiology. The aim of this investigation was to intraindividually compare 2 macrocyclic MRI contrast agents, with low risk for nephrogenic systemic fibrosis, in the morphologic and dynamic characterization of histologically verified mass breast lesions, analyzed by blinded human evaluation and a fully automatic computer-assisted diagnosis (CAD) technique. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. In this prospective, single-center study, 45 women with 51 histopathologically verified (41 malignant, 10 benign) mass lesions underwent 2 identical examinations at 1.5 T (mean time interval, 2.1 days) with 0.1-mmol kg doses of gadoteric acid and gadobutrol. All magnetic resonance images were visually evaluated by 2 experienced, blinded breast radiologists in consensus and by an automatic CAD system, whereas the morphologic and dynamic characterization as well as the final human classification of lesions were performed based on the categories of the Breast imaging reporting and data system MRI atlas. Lesions were also classified by defining their probability of malignancy (morpho-dynamic index; 0%-100%) by the CAD system. Imaging results were correlated with histopathology as gold standard. RESULTS The CAD system coded 49 of 51 lesions with gadoteric acid and gadobutrol (detection rate, 96.1%); initial signal increase was significantly higher for gadobutrol than for gadoteric acid for all and the malignant coded lesions (P < 0.05). Gadoteric acid resulted in more postinitial washout curves and fewer continuous increases of all and the malignant lesions compared with gadobutrol (CAD hot spot regions, P < 0.05). Morphologically, the margins of the malignancies were different between the 2 agents, whereas gadobutrol demonstrated more spiculated and fewer smooth margins (P < 0.05). Lesion classifications by the human observers and by the morpho-dynamic index compared with the histopathologic results did not significantly differ between gadoteric acid and gadobutrol. CONCLUSIONS Macrocyclic contrast media can be reliably used for breast dynamic contrast-enhanced MRI. However, gadoteric acid and gadobutrol differed in some dynamic and morphologic characterization of histologically verified breast lesions in an intraindividual, comparison. Besides the standardization of technical parameters and imaging evaluation of breast MRI, the standardization of the applied contrast medium seems to be important to receive best comparable MRI interpretation.
Resumo:
Diseases of paranasal sinuses and nasal passages in horses can be a diagnostic challenge because of the complex anatomy of the head and limitations of many diagnostic modalities. Our hypothesis was that magnetic resonance (MR) imaging would provide excellent anatomical detail and soft tissue resolution, and would be accurate in the diagnosis of diseases of the paranasal sinuses and nasal passages in horses. Fourteen horses were imaged. Inclusion criteria were lesions located to the sinuses or nasal passages that underwent MR imaging and subsequent surgical intervention and/or histopathologic examination. A low field, 0.3 tesla open magnet was used. Sequences in the standard protocol were fast spin echo T2 sagittal and transverse, spin echo T1 transverse, short-tau inversion recovery (STIR) dorsal, gradient echo 3D T1 MPR dorsal (plain and contrast enhanced), spin echo T1 fatsat (contrast enhanced). Mean scan time to complete the examination was 53 min (range 39-99 min). Lesions identified were primary or secondary sinusitis (six horses), paranasal sinus cyst (four horses), progressive ethmoid hematoma (two horses), and neoplasia (two horses). The most useful sequences were fast spin echo T2 transverse and sagittal, STIR dorsal and FE3D MPR (survey and contrast enhanced). Fluid accumulation, mucosal thickening, presence of encapsulated contents, bone deformation, and thickening were common findings observed in MR imaging. In selected horses, magnetic resonance imaging is a useful tool in diagnosing lesions of the paranasal sinuses and nasal passages.
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.