951 resultados para SOLVENT POLARITIES
Resumo:
In the structure of CH6N3+ C8H7O2-, the guanidinium cation gives three cyclic hydrogen-bonding interactions with O acceptors of three independent phenylacetate anions, one R2/2(8) and two R1/2(6), giving one-dimensional columnar structures which extend down the 4~2~ axis in the tetragonal cell. Within these structures there are 86.5A^3^ solvent accessible voids.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry
Resumo:
Melt electrospinning is relatively under-investigated compared to solution electrospinning but provides opportunities in numerous areas, in which solvent accumulation or toxicity are a concern. These applications are diverse, and provide a broad set of challenges to researchers involved in electrospinning. In this context, melt electrospinning provides an alternative approach that bypasses some challenges to solution electronspinning, while bringing new issues to the forefront, such as the thermal stability of polymers. This Focus Review describes the literature on melt electrospinning, as well as highlighting areas where both melt and solution are combined, and potentially merge together in the future.
Resumo:
We have used a scanning tunneling microscope to manipulate heteroleptic phthalocyaninato, naphthalocyaninato, porphyrinato double-decker molecules at the liquid/solid interface between 1-phenyloctane solvent and graphite. We employed nano-grafting of phthalocyanines with eight octyl chains to place these molecules into a matrix of heteroleptic double-decker molecules; the overlayer structure is epitaxial on graphite. We have also used nano-grafting to place double-decker molecules in matrices of single-layer phthalocyanines with octyl chains. Rectangular scans with a scanning tunneling microscope at low bias voltage resulted in the removal of the adsorbed doubledecker molecular layer and substituted the double-decker molecules with bilayer-stacked phthalocyanines from phenyloctane solution. Single heteroleptic double-decker molecules with lutetium sandwiched between naphthalocyanine and octaethylporphyrin were decomposed with voltage pulses from the probe tip; the top octaethylporphyrin ligand was removed and the bottom naphthalocyanine ligand remained on the surface. A domain of decomposed molecules was formed within the double-decker molecular domain, and the boundary of the decomposed molecular domain self-cured to become rectangular. We demonstrated a molecular “sliding block puzzle” with cascades of double-decker molecules on the graphite surface.
Resumo:
A solvothermal route for the preparation of crystalline state lithium niobate using Li2 CO3 and Nb2 O5 is developed. Oxalic acid is employed as solvent, which coordinates with niobium oxide to stimulate the main reaction. Scanning electron microscopy images show that the as-prepared sample displays a cubic morphology. X-ray diffraction and IR spectrum of the as-prepared sample indicate that the sample is well crystalline.
Resumo:
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.
Resumo:
In recent years, the application of heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works on the titanium dioxide (TiO2) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and waste water effluents. The effect of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggested that the photocatalytic degradation of organic compounds depends on the type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcinations temperature in water environment. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has shown good potential for the removal of various organic pollutants. However, still there is a need to find out the practical utility of this technique on commercial scale.
Resumo:
In recent years, there has been an enormous amount of research and development in the area of heterogeneous photocatalytic water purification process due to its effectiveness in degrading and mineralising the recalcitrant organic compounds as well as the possibility of utilising the solar UV and visible spectrum. One hundred and twenty recently published papers are reviewed and summarised here with the focus being on the photocatalytic oxidation of phenols and their derivatives, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and substituted phenols are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidising agents/electron acceptors, mode of catalyst application, and calcination temperatures can play an important role on the photocatalytic degradation of phenolic compounds in wastewater. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various phenols and substituted phenols are also reviewed.
Resumo:
Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.
Resumo:
An existing model for solvent penetration and drug release from a spherically-shaped polymeric drug delivery device is revisited. The model has two moving boundaries, one that describes the interface between the glassy and rubbery states of polymer, and another that defines the interface between the polymer ball and the pool of solvent. The model is extended so that the nonlinear diffusion coefficient of drug explicitly depends on the concentration of solvent, and the resulting equations are solved numerically using a front-fixing transformation together with a finite difference spatial discretisation and the method of lines. We present evidence that our scheme is much more accurate than a previous scheme. Asymptotic results in the small-time limit are presented, which show how the use of a kinetic law as a boundary condition on the innermost moving boundary dictates qualitative behaviour, the scalings being very different to the similar moving boundary problem that arises from modelling the melting of an ice ball. The implication is that the model considered here exhibits what is referred to as ``non-Fickian'' or Case II diffusion which, together with the initially constant rate of drug release, has certain appeal from a pharmaceutical perspective.
Resumo:
A series of layered double hydroxides (LDHs) based composites were synthesized by using induced hydrolysis silylation method (IHS), surfactant precursor method, in-situ coprecipitation method, and direct silylation method. Their structures, morphologies, bonding modes and thermal stabilities can be readily adjusted by changing the parameters during preparation and drying processing of the LDHs. The characterization results show that the direct silylation reaction cannot occur between the dried LDHs and 3-aminopropyltriethoxysilane (APS) in an ethanol medium. However, the condensation reaction can proceed with heating process between adsorbed APS and LDHs plates. While using wet state substrates with and without surfactant and ethanol as the solvent, the silylation process can be induced by hydrolysis of APS on the surface of LDHs plates. Surfactants improve the hydrophobicity of the LDHs during the process of nucleation and crystallization, resulting in fluffy shaped crystals; meanwhile, they occupy the surface –OH positions and leave less “free –OH” available for the silylation reaction, favoring formation of silylated products with a higher population in the hydrolyzed bidentate (T2) and tridentate (T3) bonding forms. These bonding characteristics lead to spherical aggregates and tightly bonded particles. All silylated products show higher thermal stability than those of pristine LDHs.
Resumo:
Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem-cell mediated therapies for fracture and other orthopaedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of simulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase (ALP) activity and extracellular matrix mineralization. Furthermore, similar DMSO mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1 we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased ALP activity and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. Flow on knockdown of bone specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.