921 resultados para SINGLE-NUCLEOTIDE POLYMORPHISMS
Resumo:
The enzyme catechol-o-methyltransferase (COMT) transfers a methyl group from adenosylmethionine to catecholamines including the neurotransmitters dopamine, epinephrine and norepinephrine. This methylation results in the degradation of catecholamines. The involvement of the COMT gene in the metabolic pathway of these neurotransmitters has made it an attractive candidate gene for many psychiatric disorders. In this article, we reported our study of association of COMT with schizophrenia in Irish families with a high density of schizophrenia. Three single nucleotide polymorphisms (SNPs) were genotyped for the 274 such families and within-family transmission disequilibrium tests were performed. SNP rs4680, which is the functional Val/Met polymorphism, showed modest association with the disease by the TRANSMIT, FBAT and PDT programs, while the other two SNPs were negative. These SNPs showed lower level of LDs with each other in the Irish subjects than in Ashkenazi Jews. Haplotype analysis indicated that a haplotype, haplotype A-G-A for SNPs rs737865-rs4680-rs165599, was preferentially transmitted to the affected subjects. This was different from the reported G-G-G haplotype found in Ashkenazi Jews, but both haplotypes shared the Val allele. We concluded that COMT gene is associated with schizophrenia and carries a small but significant risk to the susceptibility in the Irish subjects.
Resumo:
Chromosome 5q21-33 has been implicated in harboring risk genes for schizophrenia. In this paper, we report evidence that multiple single nucleotide polymorphisms in and around interleukin 3 (IL3) are associated with the disease in the Irish Study of High-Density Schizophrenia Families (ISHDSF), the Irish Case-Control Study of Schizophrenia (ICCSS) and the Irish Trio Study of Schizophrenia (ITRIO). The associations are sex-specific and depend on the family history (FH) of schizophrenia. In all three samples, rs31400 shows female-specific and FH-dependent associations (P=0.0062, 0.0647 and 0.0284 for the ISHDSF, ICCSS and ITRIO, respectively). Several markers have similar associations in one or two of the three samples. In haplotype analyses, identical risk and protective haplotypes are identified in the ISHDSF and ITRIO samples in several multimarker combinations. For ICCSS, the same haplotypes are implicated; however, the risk haplotypes observed in the family samples become protective. Several significant markers, rs440970, rs31400 and rs2069803, are located in and around known estrogen response elements, promoter and enhancer of the IL3 gene. They may explain the sex-specific associations and be functional for the expression of IL3 gene.
Resumo:
Purpose: Polymorphisms in the vitamin D receptor (VDR) gene may be of etiological importance in determining cancer risk. The aim of this study was to assess the association between common VDR gene polymorphisms and esophageal adenocarcinoma (EAC) risk in an all-Ireland population-based case-control study. Methods: EAC cases and frequency-matched controls by age and gender recruited between March 2002 and December 2004 throughout Ireland were included. Participants were interviewed, and a blood sample collected for DNA extraction. Twenty-seven single nucleotide polymorphisms in the VDR gene were genotyped using Sequenom or TaqMan assays while the poly(A) microsatellite was genotyped by fluorescent fragment analysis. Unconditional logistic regression was applied to assess the association between VDR polymorphisms and EAC risk. Results: A total of 224 cases of EAC and 256 controls were involved in analyses. After adjustment for potential confounders, TT homozygotes at rs2238139 and rs2107301 had significantly reduced risks of EAC compared with CC homozygotes. In contrast, SS alleles of the poly(A) microsatellite had significantly elevated risks of EAC compared with SL/LL alleles. However, following permutation analyses to adjust for multiple comparisons, no significant associations were observed between any VDR gene polymorphism and EAC risk. Conclusions: VDR gene polymorphisms were not significantly associated with EAC development in this Irish population. Confirmation is required from larger studies. © Springer Science+Business Media, LLC 2011.
Resumo:
CD2-associated protein (CD2AP) is essential for podocyte function. CD2AP mutations have been found in patients with focal segmental glomerulosclerosis, a disease histologically resembling diabetic nephropathy and often progressing to end-stage renal disease (ESRD). We hypothesised that variations in the CD2AP gene may contribute to susceptibility to glomerular injury in diabetes and investigated if single-nucleotide polymorphisms (SNPs) in CD2AP are associated with diabetic nephropathy in patients with type 1 diabetes. The discovery cohort consisted of 2,251 Finnish patients with type 1 diabetes. SNPs were selected from the HapMap database to cover the CD2AP gene. The associations between genotyped SNPs and diabetic nephropathy or ESRD were analysed with the chi-squared test and logistic regression. Three SNPs were selected for replication in cohorts from Denmark, Italy, the United Kingdom and Ireland. None of the 15 successfully genotyped SNPs were associated with diabetic nephropathy when compared to patients with normal albumin excretion rate. However, when genotype frequencies in patients with ESRD were compared with all other patients, two CD2AP SNPs, rs9369717 and rs9349417, were found to be associated with ESRD. The meta-analysis of the original and two additional European cohorts resulted in significant p values
Resumo:
New-onset diabetes after transplantation is a common complication that reduces recipient survival. Research in renal transplant recipients has suggested that pancreatic ß-cell dysfunction, as opposed to insulin resistance, may be the key pathologic process. In this study, clinical and genetic factors associated with new-onset diabetes after transplantation were identified in a white population. A joint analysis approach, with an initial genome-wide association study in a subset of cases followed by de novo genotyping in the complete case cohort, was implemented to identify single-nucleotide polymorphisms (SNPs) associated with the development of new-onset diabetes after transplantation. Clinical variables associated with the development of diabetes after renal transplantation included older recipient age, female sex, and percentage weight gain within 12 months of transplantation. The genome-wide association study identified 26 SNPs associated with new-onset diabetes after transplantation; this association was validated for eight SNPs (rs10484821, rs7533125, rs2861484, rs11580170, rs2020902, rs1836882, rs198372, and rs4394754) by de novo genotyping. These associations remained significant after multivariate adjustment for clinical variables. Seven of these SNPs are associated with genes implicated in ß-cell apoptosis. These results corroborate recent clinical evidence implicating ß-cell dysfunction in the pathophysiology of new-onset diabetes after transplantation and support the pursuit of therapeutic strategies to protect ß cells in the post-transplant period.
Resumo:
Aims/hypothesis: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes.
Methods: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1 diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10−4 were followed up in 3,750 additional patients with type 1 diabetes from seven studies.
Results: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10−8). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic association observed at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes.
Conclusions/interpretation: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
Resumo:
Purpose: Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway.
Methods: Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis.
Results: The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway.
Conclusions: Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.
Resumo:
Tuberculosis (TB) caused by Mycobacterium bovis is a re-emerging disease of livestock that is of major economic importance worldwide, as well as being a zoonotic risk there is significant heritability for host resistance to bovine TB (bTB) in dairy cattle. To identify resistance loci for bTB, we undertook a genome-wide association study in female Holstein-Friesian cattle with 592 cases and 559 age-matched controls from case herds. Cases and controls were categorised into distinct phenotypes: skin test and lesion positive vs skin test negative on multiple occasions, respectively these animals were genotyped with the Illumina BovineHD 700K BeadChip. Genome-wide rapid association using linear and logistic mixed models and regression (GRAMMAR), regional heritability mapping (RHM) and haplotype-sharing analysis identified two novel resistance loci that attained chromosome-wise significance, protein tyrosine phosphatase receptor T (PTPRT; P=4.8 × 10 -7) and myosin IIIB (MYO3B; P=5.4 × 10 -6). We estimated that 21% of the phenotypic variance in TB resistance could be explained by all of the informative single-nucleotide polymorphisms, of which the region encompassing the PTPRT gene accounted for 6.2% of the variance and a further 3.6% was associated with a putative copy number variant in MYO3B the results from this study add to our understanding of variation in host control of infection and suggest that genetic marker-based selection for resistance to bTB has the potential to make a significant contribution to bTB control.
Resumo:
Converging evidence implicates immune abnormalities in schizophrenia (SCZ), and recent genome-wide association studies (GWAS) have identified immune-related single-nucleotide polymorphisms (SNPs) associated with SCZ. Using the conditional false discovery rate (FDR) approach, we evaluated pleiotropy in SNPs associated with SCZ (n=21 856) and multiple sclerosis (MS) (n=43 879), an inflammatory, demyelinating disease of the central nervous system. Because SCZ and bipolar disorder (BD) show substantial clinical and genetic overlap, we also investigated pleiotropy between BD (n=16 731) and MS. We found significant genetic overlap between SCZ and MS and identified 21 independent loci associated with SCZ, conditioned on association with MS. This enrichment was driven by the major histocompatibility complex (MHC). Importantly, we detected the involvement of the same human leukocyte antigen (HLA) alleles in both SCZ and MS, but with an opposite directionality of effect of associated HLA alleles (that is, MS risk alleles were associated with decreased SCZ risk). In contrast, we found no genetic overlap between BD and MS. Considered together, our findings demonstrate genetic pleiotropy between SCZ and MS and suggest that the MHC signals may differentiate SCZ from BD susceptibility.Molecular Psychiatry advance online publication, 28 January 2014; doi:10.1038/mp.2013.195.
Resumo:
The Schizophrenia Psychiatric Genome-Wide Association Study Consortium (PGC) highlighted 81 single-nucleotide polymorphisms (SNPs) with moderate evidence for association to schizophrenia. After follow-up in independent samples, seven loci attained genome-wide significance (GWS), but multi-locus tests suggested some SNPs that did not do so represented true associations. We tested 78 of the 81 SNPs in 2640 individuals with a clinical diagnosis of schizophrenia attending a clozapine clinic (CLOZUK), 2504 cases with a research diagnosis of bipolar disorder, and 2878 controls. In CLOZUK, we obtained significant replication to the PGC-associated allele for no fewer than 37 (47%) of the SNPs, including many prior GWS major histocompatibility complex (MHC) SNPs as well as 3/6 non-MHC SNPs for which we had data that were reported as GWS by the PGC. After combining the new schizophrenia data with those of the PGC, variants at three loci (ITIH3/4, CACNA1C and SDCCAG8) that had not previously been GWS in schizophrenia attained that level of support. In bipolar disorder, we also obtained significant evidence for association for 21% of the alleles that had been associated with schizophrenia in the PGC. Our study independently confirms association to three loci previously reported to be GWS in schizophrenia, and identifies the first GWS evidence in schizophrenia for a further three loci. Given the number of independent replications and the power of our sample, we estimate 98% (confidence interval (CI) 78-100%) of the original set of 78 SNPs represent true associations. We also provide strong evidence for overlap in genetic risk between schizophrenia and bipolar disorder.
Resumo:
Background and Aims: Although hybridization can play a positive role in plant evolution, it has been shown that excessive unidirectional hybridization can result in replacement of a species’ gene pool, and even the extinction ofrare species via genetic assimilation. This study examines levels of introgression between the common Saxifraga spathularis and its rarer congener S. hirsuta, which have been observed to hybridize in the wild where they occursympatrically.
Methods: Seven species-specific single nucleotide polymorphisms (SNPs) were analysed in 1025 plants representing both species and their hybrid, S. polita, from 29 sites across their ranges in Ireland. In addition, species distributionmodelling was carried out to determine whether the relative abundance of the two parental species is likely to change under future climate scenarios.
Key Results: Saxifraga spathularis individuals tended to be genetically pure, exhibiting little or no introgression from S. hirsuta, but significant levels of introgression of S. spathularis alleles into S. hirsuta were observed, indicatingthat populations exhibiting S. hirsuta morphology are more like a hybrid swarm, consisting of backcrosses and F2s. Populations of the hybrid, S. polita, were generally comprised of F1s or F2s, with some evidence of backcrossing. Species distribution modelling under projected future climate scenarios indicated an increase in suitable habitats for both parental species.
Conclusions: Levels of introgression observed in this study in both S. spathularis and S. hirsuta would appear to be correlated with the relative abundance of the species. Significant introgression of S. spathularis alleles was detectedin the majority of the S. hirsuta populations analysed and, consequently, ongoing introgression would appear to represent a threat to the genetic integrity of S. hirsuta, particularly in areas where the species exists sympatricallywith its congener and where it is greatly outnumbered.
Resumo:
Sex hormone binding globulin (SHBG) is a glycoprotein composed of two 373-amino-acid subunits. The SHBG gene and a promotor region have been identified. The SHBG receptor has yet to be cloned but is known to act through a G-protein-linked second-messenger system following plasma membrane binding. The principal function of SHBG has traditionally been considered to be that of a transport protein for sex steroids, regulating circulating concentrations of free (unbound) hormones and their transport to target tissues. Recent research suggests that SHBG has functions in addition to the binding and transport of sex steroids. Observational studies have associated a low SHBG concentration with an increased incidence of type 2 diabetes mellitus (DM) independent of sex hormone levels in men and women. Genetic studies using Mendelian randomization analysis linking three single nucleotide polymorphisms of the SHBG gene to risk of developing type 2 DM suggest SHBG may have a role in the pathogenesis of type 2 DM. The correlation between SHBG and insulin resistance that is evident in a number of cross-sectional studies is in keeping with the suggestion that the association between SHBG and incidence of type 2 DM is explained by insulin resistance. Several potential mechanisms may account for this association, including the identification of dietary factors that influence SHBG gene transcription. Further research to characterize the SHBG-receptor and the SHBG second messenger system is required. An interventional study examining the effects on insulin resistance of altering SHBG concentrations may help in determining whether this association is causal.
Resumo:
The development of a quick PCR-based method to distinguish European cryptic Myotis spp., Myotis mystacinus, Myotis brandtii and Myotis alcathoe is described. Primers were designed around species-specific single nucleotide polymorphisms (SNP's) in the ND1 mitochondrial gene, and a pair of control primers was designed in the 12S mitochondrial gene. A multiplex of seven primer combinations produces clear species-specific bands using gel electrophoresis. Robustness of the method was tested on 33 M. mystacinus, 16 M. brandtii and 15 M. alcathoe samples from across the European range of these species. The method worked well on faecal samples collected from maternity roosts of M. mystacinus. The test is intended to aid collection of data on these species through a rapid and easy identification method with the ability to use DNA obtained from a range of sources including faecal matter.
Resumo:
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
Resumo:
Aims/hypothesis
The genetic determinants of diabetic nephropathy remain poorly understood. We aimed to identify novel susceptibility genes for diabetic nephropathy.
MethodsWe performed a genome-wide association study using 1000 Genomes-based imputation to compare type 1 diabetic nephropathy cases with proteinuria and with or without renal failure with control patients who have had diabetes for more than 15 years and no evidence of renal disease.
ResultsNone of the single nucleotide polymorphisms (SNPs) tested in a discovery cohort composed of 683 cases and 779 controls reached genome-wide statistical significance. The 46 top hits (p < 10−5) were then sought for first-stage analysis in the Genetics of Kidneys in Diabetes US (US-GoKinD) study, an independent population of 820 cases and 885 controls. Two SNPs in strong linkage disequilibrium with each other and located in the SORBS1 gene were consistently and significantly (p < 10−4) associated with diabetic nephropathy. The minor rs1326934-C allele was less frequent in cases than in controls (0.34 vs 0.43) and was associated with a decreased risk for diabetic nephropathy (OR 0.70; 95% CI 0.60, 0.82). However, this association was not observed in a second stage with two additional diabetic nephropathy cohorts, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK and Republic of Ireland (UK-ROI; p = 0.15) and the Finnish Diabetic Nephropathy (FinnDiane; p = 0.44) studies, totalling 2,142 cases and 2,494 controls. Altogether, the random-effect meta-analysed rs1326934-C allele OR for diabetic nephropathy was 0.83 (95% CI 0.72, 0.96; p = 0.009).
Conclusions/interpretationThese data suggest that SORBS1 might be a gene involved in diabetic nephropathy.