929 resultados para SATURABLE BRAGG REFLECTOR
Resumo:
In this work we investigate the effect of temperature and diameter size on the response time of a poly(methyl methacrylate) based, polymer optical fibre Bragg grating water activity sensor. The unstrained and etched sensor was placed in an environmental chamber to maintain controlled temperature and humidity conditions and subjected to step changes in humidity. The data show a strong correlation between decrease in diameter and shorter response time. A decrease in response time was also observed with an increase in temperature.
Resumo:
Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.
Resumo:
Fibre Bragg gratings at 1568nm have been inscribed in single mode TOPAS microstructured polymer optical fibre to characterise thermal and humidity sensitivity of the fibres in the 1550nm spectral region. Results demonstrate a temperature sensitivity of approximately -36 pm/°C and a humidity sensitivity of no more than - 0.59 pm/%RH. The fibre material appears to be very attractive for long term monitoring of high strains because of its insensitivity to humidity.
Resumo:
We have implemented a dynamic strain sensor using a Polymer Optical Fiber Bragg Grating (POFBG). In this paper, we have investigated an approach for making such systems cheaper through the use of easy to handle multimode fiber. A Vertical-Cavity Surface-Emitting Laser is used to decrease the cost of the interrogation system and a photodetector converts the reflected light into an electrical signal.
Resumo:
The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.
Resumo:
We report that the main photosensitive mechanism of poly(methyl methacrylate)-based optical fiber Bragg grating (POFBG) under ultraviolet laser micromachining is a complex process of both photodegradation and negative thermo-optic effect. We found experimentally the unique characteristics of Bragg resonance splitting and reunion during the laser micromachining process providing the evidence of photodegradation, while the mean refractive index change of POFBG was measured to be negative confirming further photodegradation of polymer fiber. The thermal-induced refractive index change of POFBG was also observed by recording the Bragg wavelength shift. Furthermore, the dynamic thermal response of the micromachined-POFBG was demonstrated under constant humidity, showing a linear and negative response of around -47.1 pm/°C.
Resumo:
We inscribe FBGs in all cores of four core fiber simultaneously and investigate their thermal, strain and bending (both direction and magnitude) responses. The influence of fiber core distance on bending sensitivity is also discussed. © 2015 OSA.
Resumo:
Two-channel fiber Bragg grating (TC-FBG) consisting of two localized sub-gratings parallel in the fiber core is fabricated by femtosecond laser. Utilizing the fabricated TC-FBG, stable and switchable dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. © 2015 OSA.
Resumo:
A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors and 86 pm/cm for the fifth. The discrepancy in the sensitivity of the fifth sensor has been explained as being a result of the annealing of the other four sensors. Initial testing in JET A-1 aviation fuel revealed the unsuitability of silicone rubber diaphragms for prolonged usage in fuel. A second set of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used.
Resumo:
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
Resumo:
The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.
Resumo:
The inscription of low insertion loss and negligibly polarization dependent fiber Bragg gratings inscribed using a femtosecond laser system is reported. Insertion losses were <0.4dB/20mm and polarization wavelength shift of <5pm, with transmission changes <0.1dB. © 2010 Optical Society of America.
Resumo:
We report the generation of a 13dB 2nd order Bragg resonance in a conventionally UV inscribed 45° tilted fiber grating, showing strong polarization dependency and its application for singe polarization output of a fiber laser. © 2010 Optical Society of America.
Resumo:
A carbon nanotube (CNT)-modified microfiber Bragg grating (MFBG) is proposed to measure the refractive index with a strong enhancement of the sensitivity in the low refractive index region. The introduction of the CNT layer influences the evanescent field of the MFBG and causes modification of the reflection spectrum. With the increase of the surrounding refractive index (SRI), we observe significant attenuation to the peak of the Bragg resonance, while its wavelength remains almost unchanged. Our detailed experimental results disclose that the CNT-MFBG demonstrates strong sensitivity in the low refractive index range of 1.333-1.435, with peak intensity up to -53.4 dBm/refractive index unit, which is 15-folds higher than that of the uncoated MFBG. Therefore, taking advantage of the CNT-induced evanescent field enhancement, the reflective MFBG probe presents strong sensing capability in biochemical fields.
Resumo:
A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.