1000 resultados para S. Francisco de Assis
Resumo:
The necessity of the view of the Youth and Adults Education (EJA) subjects beyond of their academic failures becomes imperative for a reconfiguration of this teaching modality. Thus, the compromise of this study is to go into these subjects universe, give them a voice and, therefore, understand, in general, the web of relationships between these subjects and the school. It is understood that it is not possible to figure out the means attributed by the subjects without consideration, as an essential element, the social context in which such means has been built. For the development of this study, the methodology adopted was the ethnographic research. The procedures used for the data construction were the participative observation, the semi-structured interviews with a focal group, and the individualized semi-structured interviews. For the understanding of the data constructed in the field, the content analysis technique was used, which reach the expectations of an interpretative analysis. The observation occurred mainly in the classrooms, on a public school, located in a City of Natal/RN. The interviews were taken with a sample of eight students, males and females, with 25 to 60 year-olds. Such interviews highlight that for the young adult students, the school is much more than a place to learn. They realize such space as enabler of social interaction, as well as the possibility of rising through new professional horizons and, therefore achieve a social mobility. For the older students, mainly among women, the return to the school benches brings into the learning discourse, the desire of making new friends, having moments of meeting, chatting and relaxation, finally, to forget the problems of the day by day. The school quotidian observation allows a better understanding of the action of the subjects in relationship with the school practices. Finally, it can be affirmed that seeking for the school has not only the intention to recover the time lost in the childhood. Learning remains as a secondary goal. It does not matter whether they will be retained or promoted to the next level at the end of the academic year, what really matters is to be in school.
Resumo:
Lettres àune Princesse d'Allemagne sur divers sujets de physique et de philosophie (Letters to a Princess of Germany on various topics of physics and philosophy) is the work taken as an object of study of this thesis. It is a literary success written in the eighteenth century by the Swiss mathematician and physicist Leonhard Paul Euler (1707-1783) in order to meet a request from the Prussian king, Frederick II, the Great (1712-1786) to accept to guide the intellectual education of his niece, the young princess Anhalt-Dessau (1745-1808). The method of teaching and learning through letters elected to the education of the German monarch resulted in a collection of 234 matches in which Euler theory is about music, Philosophy, Mechanics, Optics, Astronomy, Theology and Ethics among others. The research seeks to point out mathematical content contained in this reference work based on the exploitation and adaptation of original historical works as an articulator of development activities for teaching mathematics in basic education and in accordance with the National Curriculum Parameters of Mathematics (NCP) work. The general objective point out the limits and didactic potential of Lettres à une Princesse d'Allemagne sur divers sujets de physique et de philosophie as a source of support for teachers of basic education in developing activities for teaching mathematics. The discussions raised point to concrete possibilities of entanglement between the extracted mathematical content of the bulge of the work with current teaching methodologies from resizing the use of letters according to Freire's pedagogical perspective of the correspondence, and especially the use of new communication channels in the century XXI, both aimed at dialogue and approximation between those who write and those who read.
Resumo:
This research has been the aim understanding the senses that managers attribute to school management of the Child Education from his owner teacher high degree formation and his professional culture. The need to research about the sense attributed to the school management of the Child Education by the managers could be considered as contribute to school management studies in the manager team perspective itself. It depart from idea that attributed senses reveal the reinvention process of the professional culture those escape from a regard less attentive and take divers forms, been construct and reconstruct in the social interactions in the live quotidian of school community. The empirical investigation has developed in the Centro Municipal de Educação Infantil (CMEI) Marilanda Bezerra, located in Natal city (RN), during the years of 2012-2013. The methodology is endorsed in the qualitative approach with character of an ethnography type research in education having as main information’s construction tools the semi structured comprehensive interview. This permit (by the interlocutor’s oral discourse) the interpretation of the senses and values selfattributed to hers actions, the personal notebook of ground registers, the record of the interpretative analysis, the evolutionary plans and the participant observation. It distinguish auteurs as Jean-Claude Kaufmann, Adir Ferreira, Snia Kramer, Álvaro Marchesi, Júlia Oliveira-Formosinho, Maurice Tardif, Telmo Caria, Andy Hargreaves; those supported this paper theoretically and methodologically. The analysis and the experience interpretation point to the possibilities of sharing actions of the Child Education unity with the community, featuring the importance of a participant and collaborative school management practice of the CMEI, highlight the value of this school management possibilities more horizontal and interactive in an essay of constitute a democratic and critical space to the professional culture, with a decisive participation of the managers team. This educational manager form has demonstrated sensibility, creativity, innovation and the possibility of social transformation through institutional action and Child Education teacher’s practices, cohabiting with the challenges, the dilemmas and the problems of work quotidian and the lacunas of a fragmentary formation.
Resumo:
Einstein’s equations with negative cosmological constant possess the so-called anti de Sitter space, AdSd+1, as one of its solutions. We will later refer to this space as to the "bulk". The holographic principle states that quantum gravity in the AdSd+1 space can be encoded by a d−dimensional quantum field theory on the boundary of AdSd+1 space, invariant under conformal transformations, a CFTd. In the most famous example, the precise statement is the duality of the type IIB string theory in the space AdS5 × S 5 and the 4−dimensional N = 4 supersymmetric Yang-Mills theory. Another example is provided by a relation between Einstein’s equations in the bulk and hydrodynamic equations describing the effective theory on the boundary, the so-called fluid/gravity correspondence. An extension of the "AdS/CFT duality"for the CFT’s with boundary was proposed by Takayanagi, which was dubbed the AdS/BCFT correspondence. The boundary of a CFT extends to the bulk and restricts a region of the AdSd+1. Neumann conditions imposed on the extension of the boundary yield a dynamic equation that determines the shape of the extension. From the perspective of fluid/gravity correspondence, the shape of the Neumann boundary, and the geometry of the bulk is sourced by the energy-momentum tensor Tµν of a fluid residing on this boundary. Clarifying the relation of the Takayanagi’s proposal to the fluid/gravity correspondence, we will study the consistence of the AdS/BCFT with finite temperature CFT’s, or equivalently black hole geometries in the bulk.
Resumo:
This research seeks to reflect on the dynamics of television reception, studying the Brazilian TV miniseries Hoje é Dia de Maria, produced by Globo Television Network, and aims to generally promote inferences in the process of image reading, mainly for aesthetic reading in school context, aiming at the formation of visual proficient readers. The research was conducted with students from the third grade of a state high school, geographically located in the city of Natal, Rio Grande do Norte. The theoretical framework comes from the assumptions of cognitive social interactionism to understand language, and it is also based on the ideas of Bakhtin (1992) and Vygotsky (1998), which enabled us to understand the social interaction and the Theory of Aesthetics Reception and Aesthetic Effect with Jauss (1979) and Iser (1999), which provided a better understanding of aesthetic experience, aesthetic effects and production of meaning. The methodological approach assumes a qualitative nature and an interpretive bias, accomplished through interviews, observation, questionnaire and application of a set of investigative activities, such as introductory exposition of themes, handing out of images and mediation process. This research is the result of a research-action process in a pedagogical intervention in a state school. The results indicate that the interactional linguistic resources used by the speakers demonstrated lack of prior knowledge and repertoire regarding image reading, which initially led them to do a cursory reading. It was evident that the respondents were unaware of the initial proposal. However, throughout the meetings, it was possible to realize their transformation, because the pre-established concepts were analyzed with the help of mediation, so that the group felt more autonomous and safe to read images at the end. The survey also showed significant data, so that the school could develop new methods of teaching televisual reading.
Resumo:
The addition of hydrogen gas as an alternative fuel source has been widely used, as well reported in scientific literature. Today, several experiments are underway for the use of hydrogen generators (electrolysers) demand for motor vehicles. In all these products their ads manufacturers claim that this provides a reduction of fuel consumption, reduces the emission levels of toxic gas by the discharge and improves engine life. This research analyzes the physical structure of engine components using electrolysis on demand. To this end, a stationary system was fitted with a power generator of electricity, drum roller and adapted two electrolyzers: a dry cell and wet cell other. In steps observation were consumption analyzes in four work load ranges and observing the piston engine, which has been cut and analyzed by Optical Microscopy (OM), Scanning Electron Microscopy and Dispersive Energy (SEM-EDS), X – Ray Diffraction (XRD) and Confocal Microscopy, the stationary system in each step. The results showed a considerable reduction in fuel consumption and a high corrosion in the original factory piston constituted of aluminum-silicon alloy. As corrosion barrier was made a plasma nitriding in the piston head, which proved resistant to attack by hydrogen, although it has presented evidence also, of having been attacked. It is concluded that the automotive electrolysers can be a good choice in terms of consumption and reducing toxic gas emissions, but the material of the combustion chambers of vehicles must be prepared for this purpose.
Resumo:
The reduction in energy consumption is the main requirement to be satisfied in refrigeration and air conditioning by mechanical vapor compression system. In automotive system isn´t different. Thermal analyses in these systems are crucial for a better performance in automotive air conditioner. This work aims to evaluate the conditions of use of R134A refrigerant (used in vehicles) and compare with R437A (alternative refrigerant), varying the speed of the electric fan in the evaporator. All tests were performed in automotive air conditioning unit ATR600, simulating the thermal conditions of the system. The equipment is instrumented for data acquisition temperature, condensation and evaporation pressures and electrical power consumed to determine the coefficient of performance of the cycle. The system was tested under rotations of 800, 1600 and 2400 rpm with constant load of R- 134a. It occurred with the same conditions with R437A. Both recommended by the manufacturer. The results show that the best system performance occurs in the rotation of 800 RPM for both refrigerants.
Resumo:
Household refrigerators are equipments that represent a significant portion on the eletricity consumption of Brazilian homes. The use of these devices with low energy efficiency contributes to increase the energy consumption. The energy efficiency of a refrigerator is a function of the interaction between the coolant fluid and the components of the thermodynamic cycle. Changes in load and/or nature of the coolant may modify the condensing and/or evaporation pressures. The volumetric capacity of the compressor, the mass flow of coolant and the compression power are dependent parameters of the condensation and evaporation pressures. Thus, the expansion devices exert an importante role in the balance of these pressures, being fundamental for the better performance of the refrigeration cycle. This experimental research aims to investigate the sensitivity of the performance parameters of a household refrigerator operating with R134a and at different evaporation pressures. Therefore, a small refrigerator was instrumented with temperature, pressure sensors and other variables of interest, installed along the cooling circuit, in order to allow the thermal mapping and the evaluation of the equipment performance parameters. The variation of pressure loss in the coolant fluid resulting from the operation of the expansion valve with micrometric adjustment that modifies the evaporation temperature, influencing significantly the performance parameters of the thermodynamic refrigeration cycle.
Resumo:
In the Oil industry, oil and gas pipelines are commonly utilized to perform the transportation of production fluids to longer distances. The maintenance of the pipelines passes through the analysis of several tools, in which the most currently used are the pipelines inspection cells, popularly knowing as PIG. Among the variants existing in the market, the instrumented PIG has a significant relevance; acknowledging that through the numerous sensors existing in the equipment, it can detect faults or potential failure along the inspected line. Despite its versatility, the instrumented PIG suffers from speed variations, impairing the reading of sensors embedded in it. Considering that PIG moves depending on the speed of the production fluid, a way to control his speed is to control the flow of the fluid through the pressure control, reducing the flow rate of the produced flow, resulting in reduction of overall production the fluid in the ducts own or with the use of a restrictive element (valve) installed on it. The characteristic of the flow rate/pressure drop from restrictive elements of the orifice plate is deducted usually from the ideal energy equation (Bernoulli’s equation) and later, the losses are corrected normally through experimental tests. Thus, with the objective of controlling the fluids flow passing through the PIG, a valve shutter actuated by solenoid has been developed. This configuration allows an ease control and stabilization of the flow adjustment, with a consequent response in the pressure drops between upstream and downstream of the restriction. It was assembled a test bench for better definition of flow coefficients; composed by a duct with intern diameter of four inches, one set of shutters arranged in a plate and pressure gauges for checking the pressure drop in the test. The line was pressurized and based on the pressure drop it was possible to draw a curve able to characterize the flow coefficient of the control valve prototype and simulate in mockup the functioning, resulting in PIG speed reduction of approximately 68%.
Resumo:
Agriculture is an essential activity to the human development, the tendency is that their need to increase according to the increase in world population. It is very important to take the maximum performance that is possible of each land without degrading it, a frequently monitoring is essential for the best performance. The purpose of this work is, nondestructively, to monitor the surface electrical conductivity of the soil in a demarcated area, as on a plantation, using low frequency radio waves. The conductivity is directly linked to the amount of water in the area and nutrients, therefore a periodic or even permanent monitoring increases significantly the efficient of the use of the soil. They will be used long-wave radio transmission or medium whose main characteristic to spread over the surface of the earth. It is possible to choose an AM radio with location, frequency and power of the transmission known or generate the signal. The studied method computes the conductivity of the ground in a straight line between two measured points, so it can be used in smaller or larger size fields. Measurements were carried out using an electromagnetic field strength analyzer. The data obtained in the measurements are processed by a numerical calculation program, in our case Matlab. It is concluded that the recommendations of the ITU (International Telecommunication Union) on the conductivity of soil in Brazil is far from reality, on some routes the recommendations indicate the use of the electrical conductivity of the soil 1 mS/m, while the measurements was found 19 mS/m. With the method described a precision farmer, once initial research for about a year, can monitor the humidity and salinity of the land, with the ability to predict the area and the most suitable time for irrigation and fertilization, making management more efficient and less expensive, while optimizing water use, natural resource increasingly precious.
Resumo:
This dissertation is a research based on the Meaningful Learning Theory, with students from the second year of High School, in the city named Capinzal do Norte, state of Maranhão. The pedagogic approach of this research focuses on what to do and how to do so students can better grasp knowledge inherent to the Euclidean Special Geometry in a more meaningful and changing way, also that information may be kept longer in their brain, so it can last longer in the present and future. The methodological strategy adopted was the research-action, followed by the constant observance of a researcher on the matter with the purpose to ensure consistent results, which come from the use of a variety of data collector instruments, such as: Concept Maps, manipulatives, educational softwares and application of evaluative tests, besides the observations made throughout the process of investigation and the diagnosis itself. It is all due to the fact that we rely on the premise that knowledge is assimilated in particular and idiosyncratic ways, which means each and every student learns in different ways and in different periods of time. That is why it is so important to develop diversified methodologies to the same subject. This research adds to the other ones related to the theoretical frameworks of the Meaningful Learning Theory, of Concept Maps, of the use of technology on the educational process and of manipulatives, which purpose is to connect their common dots. This pedagogical intervention also focuses on the construction of the educational orientations with applicability directly on class, directed specially by the Mathematics teacher of the basic education, who might use them during your teaching practice. Such guidelines established here as an educational product aim to follow the Theory's assumptions that serves as basis to this research, thus becoming an educational element with a relevant significance. The results, with which we are faced, proved overwhelming to the proposed objectives in terms of learning, which were evident in the construction of Conceptual Maps, as well as in the use of Concrete Materials, in addition to serving as a motivational element to participating students of research. The results obtained are indeed reliable in terms of learning, considered the expected goals, and made us certain that the way we have approached the subject is consistent with a holistic education and that at the same time values the tiniest details, which are fundamental to all the learning-teaching process.
Resumo:
This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.
Resumo:
This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.
Resumo:
The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.
Resumo:
The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.