974 resultados para Routes d’invasion
Resumo:
The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.
Resumo:
Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.
Resumo:
Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.
Resumo:
Calcium titanate (CaTiO3) nanophosphors were synthesized by three different routes namely solution combustion (SC), modified solid-state reaction (MSS) and solid-state (SS) methods. Rietveld refinement studies revealed the presence of an orthorhombic structure with traces of CaCO3. The crystallite sizes were found to be in the 43-45 nm range. TEM studies also confirm the nano size with well crystalline nature. EPR spectrum for SS method exhibits a broad resonance signal at g = 2.027 is attributed to TiO6](9-) center, whereas in MSS sample the resonance signals are attributed to surface electron and hole trapping sites. The TL behavior has been investigated for the first time using gamma-irradiation. TL glow peak at 169 degrees C were recorded in CaTiO3 prepared by SC, MSS and SS methods. The trapping parameters such as activation energy (E) and order of kinetics (b) were estimated using peak shape method and results are discussed in detail. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Recent advances in the generation of synthetic gauge fields in cold atomic systems have stimulated interest in the physics of interacting bosons and fermions in them. In this paper, we discuss interacting two-component fermionic systems in uniform non-Abelian gauge fields that produce a spin-orbit interaction and uniform spin potentials. Two classes of gauge fields discussed include those that produce a Rashba spin-orbit interaction and the type of gauge fields (SM gauge fields) obtained in experiments by the Shanxi and MIT groups. For high symmetry Rashba gauge fields, a two-particle bound state exists even for a vanishingly small attractive interaction described by a scattering length. Upon increasing the strength of a Rashba gauge field, a finite density of weakly interacting fermions undergoes a crossover from a BCS like ground state to a BEC state of a new kind of boson called the rashbon whose properties are determined solely by the gauge field and not by the interaction between the fermions. The rashbon Bose-Einstein condensate (RBEC) is a quite intriguing state with the rashbon-rashbon interactions being independent of the fermion-fermion interactions (scattering length). Furthermore, we show that the RBEC has a transition temperature of the order of the Fermi temperature, suggesting routes to enhance the transition temperatures of weakly interacting superfluids by tuning the spin-orbit coupling. For the SM gauge fields, we show that in a regime of parameters, a pair of particles with finite centre-of-mass momentum is the most strongly bound. In other regimes of centre-of-mass momenta, there is no two-body bound state, but a resonance like feature appears in the scattering continuum. In the many-body setting, this results in flow enhanced pairing. Also, strongly interacting normal states utilizing the scattering resonance can be created opening the possibility of studying properties of helical Fermi liquids. This paper contains a general discussion of the physics of Feshbach resonance in a non-Abelian gauge field, where several novel features such as centre-of-mass-momentum-dependent effective interactions are shown. It is also shown that a uniform non-Abelian gauge field in conjunction with a spatial potential can be used to generate novel Hamiltonians; we discuss an explicit example of the generation of a monopole Hamiltonian.
Resumo:
Streaming applications demand hard bandwidth and throughput guarantees in a multiprocessor environment amidst resource competing processes. We present a Label Switching based Network-on-Chip (LS-NoC) motivated by throughput guarantees offered by bandwidth reservation. Label switching is a packet relaying technique in which individual packets carry route information in the form of labels. A centralized LS-NoC Management framework engineers traffic into Quality of Service (QoS) guaranteed routes. LS-NoC caters to the requirements of streaming applications where communication channels are fixed over the lifetime of the application. The proposed NoC framework inherently supports heterogeneous and ad hoc system-on-chips. The LS-NoC can be used in conjunction with conventional best effort NoC as a QoS guaranteed communication network or as a replacement to the conventional NoC. A multicast, broadcast capable label switched router for the LS-NoC has been designed. A 5 port, 256 bit data bus, 4 bit label router occupies 0.431 mm(2) in 130 nm and delivers peak bandwidth of 80 Gbits/s per link at 312.5 MHz. Bandwidth and latency guarantees of LS-NoC have been demonstrated on traffic from example streaming applications and on constant and variable bit rate traffic patterns. LS-NoC was found to have a competitive AreaxPower/Throughput figure of merit with state-of-the-art NoCs providing QoS. Circuit switching with link sharing abilities and support for asynchronous operation make LS-NoC a desirable choice for QoS servicing in chip multiprocessors. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.
Resumo:
In this paper, we have proposed a novel certificate-less on-demand public key management (CLPKM) protocol for self-organized MANETs. The protocol works on flat network architecture, and distinguishes between authentication layer and routing layer of the network. We put an upper limit on the length of verification route and use the end-to-end trust value of a route to evaluate its strength. The end-to-end trust value is used by the protocol to select the most trusted verification route for accomplishing public key verification. Also, the protocol uses MAC function instead of RSA certificates to perform public key verification. By doing this, the protocol saves considerable computation power, bandwidth and storage space. The saved storage space is utilized by the protocol to keep a number of pre-established routes in the network nodes, which helps in reducing the average verification delay of the protocol. Analysis and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
We present a non-hydrolytic sol-gel combustion method for synthesizing nanocomposites of PbO quantum dots on anatase TiO2 with a high surface area. XRD, electron microscopy, DRS, cathodoluminescence and BET were employed for structural, microstructural and optical characterization of the composites. The photocatalytic activity of TiO2 and PbO/TiO2 was investigated and compared with Degussa P-25. The results indicate that the photocatalytic activity of quantum dot dispersed TiO2 is higher than that of bare TiO2 and much higher than that of commercial Degussa P-25. The origin of enhanced photoreactivity of the synthesized material can be assigned to a synergetic effect of high surface area, higher number of active sites and an engineered band structure in the heterostructure. The mechanisms for photocatalytic activity are discussed based on production of photogenerated reactive species. The knowledge gained through this report open up ideal synthesis routes for designing advanced functional heterostructures with engineered band structure and has important implications in solar energy based applications.
Resumo:
Efficient ZnO:Eu3+ (1-11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu3+ (7 mol%) was found to be in the range 27-47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at similar to 590, 615, 648 and 702 nm were attributed to the D-5(0) -> F-7(j(j=1,2,3,4)) transitions of Eu3+ ions. The highest PL intensity was recorded for 7 mol% with Eu3+ ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED's. Further, present method was reliable, environmentally friendly and alternative to economical routes. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.
Resumo:
This work analyses the unique spatio-temporal alteration of the deposition pattern of evaporating nanoparticle laden droplets resting on a hydrophobic surface through targeted low frequency substrate vibrations. External excitation near the lowest resonant mode (n = 2) of the droplet initially de-pins and then subsequently re-pins the droplet edge creating pseudo-hydrophilicity (low contact angle). Vibration subsequently induces droplet shape oscillations (cyclic elongation and flattening) resulting in strong flow recirculation. This strong radially outward liquid flow augments nanoparticle transport, vaporization, and agglomeration near the pinned edge resulting in much reduced drying time under certain characteristic frequency of oscillations. The resultant deposit exhibits a much flatter structure with sharp, defined peripheral wedge topology as compared to natural drying. Such controlled manipulation of transport enables tailoring of structural and topological morphology of the deposits and offers possible routes towards controlling the formation and drying timescales which are crucial for applications ranging from pharmaceutics to surface patterning. (C) 2014 AIP Publishing LLC.
Self-organized public key management in MANETs with enhanced security and without certificate-chains
Resumo:
In the self-organized public key management approaches, public key verification is achieved through verification routes constituted by the transitive trust relationships among the network principals. Most of the existing approaches do not distinguish among different available verification routes. Moreover, to ensure stronger security, it is important to choose an appropriate metric to evaluate the strength of a route. Besides, all of the existing self-organized approaches use certificate-chains for achieving authentication, which are highly resource consuming. In this paper, we present a self-organized certificate-less on-demand public key management (CLPKM) protocol, which aims at providing the strongest verification routes for authentication purposes. It restricts the compromise probability for a verification route by restricting its length. Besides, we evaluate the strength of a verification route using its end-to-end trust value. The other important aspect of the protocol is that it uses a MAC function instead of RSA certificates to perform public key verifications. By doing this, the protocol saves considerable computation power, bandwidth and storage space. We have used an extended strand space model to analyze the correctness of the protocol. The analytical, simulation, and the testbed implementation results confirm the effectiveness of the proposed protocol. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The investigation involves preparation and photoluminescence properties of CeO2:Eu3+ (1-11 mol%) nano phosphors by eco-friendly green combustion route using Euphorbia tirucalli plant latex as fuel. The final product was characterized by powder X-ray diffraction (PXRD), Scanning electron microcopy (SEM) and Transmission electron microscopy (TEM). The PXRD and SEM results reveals cubic fluorite phase with flaky structure. The crystallite size obtained from TEM was found to be similar to 20-25 nm, which was comparable to W-H plots and Scherrer's method. Photoluminescence (PL) emission of all the Eu3+ doped samples shows characteristic bands arising from the transitions of D-5(0) -> F-5(J) (J = 0, 1, 2, 3, 4) manifolds under excitation at 373 and 467 nm excitation. The D-5(0) -> F-7(2) (613 nm) transition often dominate the emission spectra, indicating that the Eu3+ cations occupy a site without inversion center. The highest PL intensity was recorded for 9 mol% Eu3+ ions with 5 ml latex. PL quenching was observed upon further increase in Eu3+ concentration. The international commission on illumination (CIE) chromaticity co-ordinates were calculated from emission spectra, the values (x, y) were very close to national television system committee (NTSC) standard values of pure red emission. The results demonstrate that the synthesized phosphor material could be very useful for display applications. Further, the phosphor material prepared by this method was found to be non toxic, environmental friendly and could be a potential alternative to economical routes. (C) 2014 Elsevier B.V. All rights reserved.