978 resultados para Riparian forest fragments
Resumo:
The Brazilian Atlantic forest has been reduced to a small fraction of its original area, with most remaining fragments being small and surrounded by anthropogenic matrices. This degree of disturbance, together with the increasing sprawl of cities towards the rural zone, greatly facilitates the entrance of domestic animals into these remnants. We used camera traps to compare the abundances of the domestic dog with a similarly sized native carnivore, the ocelot, in a 957-ha reserve of the Brazilian Atlantic forest in a landscape largely composed by pastures and agriculture. The dog was the most recorded species among all 17 mammal species "captured" by the cameras. Dog abundance (32-38 dogs) and density (0.812-1.813 dogs/km(2)) were significantly higher than that of the ocelot (n=2 ocelots; density=0.158-0.347 ocelots/km(2)). Although our result is restricted to a single study site, it is supported by an increasing number of recent studies, which have detected dogs inside other Atlantic forest reserves. Our study suggests, therefore, that this invasion might be more widespread than generally thought. The presence of the domestic dog is a threat to native fauna and constitutes an important edge effect of human presence at the rural zone.
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Anthropogene Fragmentierung und Störung von Wäldern beeinflussen ökologische Prozesse. Darüber hinaus werden genetische Drift und Inzucht verstärkt und die Fitness von Populationen beeinträchtigt. Um die Einflüsse von Fragmentierung und Störung auf die Biodiversität und Prozesse in tropischen Wäldern zu ermitteln, habe ich im „Kakamega Forest“, West-Kenia, die Baumart Prunus africana genauer untersucht. Dabei lag der Fokus auf (i) der Frugivorengemeinschaft und Samenausbreitung, (ii) der Kleinsäugergemeinschaft im Kontext der Samenprädation und (iii) der genetische Populationsstruktur von Keimlingen und adulten Bäumen. Der Vergleich von Keimlingen mit adulten Bäumen ermöglicht es, Veränderungen im Genfluss zwischen Generationen festzustellen. Die Ergebnisse zeigten, dass im untersuchten Waldgebiet insgesamt 49 frugivore Arten (Affen und Vögel) vorkommen. Dabei lag die Gesamtartenzahl im zusammenhängenden Wald höher als in den isoliert liegenden Fragmenten. An den Früchten von P. africana konnten insgesamt 36 Arten fressend beobachtet werden. Hier jedoch wurden in Fragmenten eine leicht erhöhte Frugivorenzahl sowie marginal signifikant erhöhte Samenausbreitungsraten nachgewiesen. Der Vergleich von stark gestörten mit weniger gestörten Flächen zeigte eine höhere Gesamtartenzahl sowie eine signifikant höhere Frugivorenzahl in P. africana in stark gestörten Flächen. Entsprechend war die Samenausbreitungsrate in stark gestörten Flächen marginal signifikant erhöht. Diese Ergebnisse deuten darauf hin, dass die quantitative Samenausbreitung in fragmentierten und gestörten Flächen etwas erhöht ist und somit eine gewisse Artenredundanz besteht, die den Verlust einzelner Arten ausgleichen könnte. Prunus africana Samen, die auf dem Boden lagen, wurden hauptsächlich von einer Nagerart (Praomys cf. jacksonii) erbeutet. Dabei war in gestörten Waldbereichen eine tendenziell höhere Prädatoraktivität zu beobachten als in weniger gestörten. Zudem waren einzelne Samen im Gegensatz zu Samengruppen in gestörten Flächen signifikant höherem Prädationsdruck ausgesetzt. Diese Ergebnisse zeigen, dass Fragmentierung sowie anthropogene Störungen auf unterschiedliche Prozesse im Lebenszyklus eines tropischen Baumes gegensätzliche Effekte haben können. Eine Extrapolation von einem auf einen anderen Prozess kann somit nicht erfolgen. Die genetische Differenzierung der adulten Baumpopulationen war gering (FST = 0.026). Der Großteil ihrer Variation (~ 97 %) lag innerhalb der Populationen, was intensiven Genfluss in der Vergangenheit widerspiegelt. Die genetische Differenzierung der Keimlinge war etwas erhöht (FST = 0.086) und ~ 91 % ihrer Variation lag innerhalb der Populationen. Im Gegensatz zu den adulten Bäumen konnte ich für Keimlinge ein „Isolation-by-distance“-Muster feststellen. Somit sind erste Hinweise auf begrenzten Genfluss im Keimlingsstadium infolge von Fragmentierung gegeben. Obwohl die Momentaufnahmen im Freiland keine Abnahme in der Frugivorenzahl und Samenausbreitung von P. africana als Folge von Fragmentierung beobachten ließen, weisen die Ergebnisse der genetischen Studie auf einen bereits reduzierten Genaustausch zwischen den Populationen hin. Somit lässt sich feststellen, dass die Faktoren Fragmentierung und Störung genetische Diversität, ökologische Prozesse und Artendiversität in Wäldern jeweils auf unterschiedliche Weise beeinflussen. Um Konsequenzen derartiger Einflüsse folgerichtig abschätzen zu können, sind Studien auf unterschiedlichen Diversitätsebenen unabdingbar.
Resumo:
Vegetation communities affect carbon and nitrogen dynamics in the subsurface water of mineral wetlands through the quality of their litter, their uptake of nutrients, root exudation and their effects on redox potential. However, vegetation influence on subsurface nutrient dynamics is often overshadowed by the influences of hydrology, soils and geology on nutrient dynamics. The effects of vegetation communities on carbon and nitrogen dynamics are important to consider when managing land that may change vegetation type or quantity so that wetland ecosystem functions can be retained. This study was established to determine the magnitude of the influences and interaction of vegetation cover and hydrology, in the form of water table fluctuations, on carbon and nitrogen dynamics in a northern forested riparian wetland. Dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrate (NO3-) and ammonium (NH4+) concentrations were collected from a piezometer network in four different vegetation communities and were found to show complex responses to vegetation cover and water table fluctuations. Dissolved organic carbon, DIC, NO3- and NH4+ concentrations were influenced by forest vegetation cover. Both NO3- and NH4+ were also influenced by water table fluctuations. However, for DOC and NH4+ concentrations there appeared to be more complex interactions than were measured by this study. The results of canonical correspondence analysis (CCA) and analysis of variance (ANOVA) did not correspond in relationship to the significance of vegetation communities. Dissolved inorganic carbon was influenced by an interaction between vegetation cover and water table fluctuations. More hydrological information is needed to make stronger conclusions about the relationship between vegetation and hydrology in controlling carbon and nitrogen dynamics in a forested riparian wetland.
Resumo:
Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.
Resumo:
In order to find out which factors influenced the forest dynamics in northern Italy during the Holocene, a palaeoecological approach involving pollen analysis was combined with ecosystem modelling. The dynamic and distribution based forest model DisCForm was run with different input scenarios for climate, species immigration, fire, and human impact and the similarity of the simulations with the original pollen record was assessed. From the comparisons of the model output and the pollen core, it appears that immigration was most important in the first part of the Holocene, and that fire and human activity had a major influence in the second half. Species not well represented in the simulation outputs are species with a higher abundance in the past than today (Corylus), with their habitat in riparian forests (Alnus) or with a strong response to human impact (Castanea).
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Questions: Do Mediterranean riparian guilds show distinct responses to stream water declines? If observed,which are the most sensitive and resilient guilds and theirmost affected attributes? Location: Tie¿tar river below the Rosarito dam, central-western Spain. Methods: We identified riparian guilds based on key woody species features and species distribution within this Mediterranean river corridor, and evaluated similarity of their responses to long-term flow alteration (i.e. stream water declines since dam construction in 1959). Hierarchical cluster analysis was used to group surveyed vegetation bands according to species composition. The groups were designated as riparian guilds where each vegetation group comprising a guild: (1) contains species sharing similar features (using PCA); and (2) shares a similar environment (using DCA). Changes in several guild attributes (i.e. dominance and species composition, diversity and establishment patterns) during the regulated period were compared statistically. We used pre- and post-dam established vegetation bands identified based on old (1956) and modern (2006) aerial photographs and field measurements of woody species diameter. Results: Responses to flow alterations varied between guilds according to ecological requirements of their species. The ability to survive water stress (i.e. ?Xeric? guilds) and drag forces caused by floods (?Torrential? guilds) allowed certain pioneer shrub-dominated guilds (e.g. Flueggea tinctoria and Salix salviifolia) to spread on newly emerged surfaces downward to the main channel after flow alterations, although new shrubland had less species diversity than pre-dam shrubland. In contrast, new hydromorphological conditions following damming limited recruitment of native late-successional tree guilds sensitive to floods (to drag forces, inundation and anoxia; i.e. ?Slow-water? and ?Flood-sensitive?, respectively) and those with greater water requirements (i.e. ?Hydric?) (e.g. Alnus glutinosa and Celtis australis), although species diversity increased in this mature forest through co-existence of remaining riparian species and new arrival of upland species. Conclusions: Changes in several riparian attributes after flow alterations differed between guilds. Stream water declines after damming caused shifts in species-poor pioneer shrubland downwards to the watered channel, resulting in severe declines ofmaturenative forest.Understanding vegetation guild responses provides information about general trends in plant populations and assemblage structures expected to occur during river development and flow regulation, increasing our capacity to detect and synthesize complex flowalteration?riparian ecosystem response relationships, and anticipate irreversible impacts.
Resumo:
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Resumo:
Includes index.
Resumo:
Includes bibliographical references.
Resumo:
"R4-Ecol-85-01."
Resumo:
Mode of access: Internet.