945 resultados para Resistance of last-resort antibiotics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Streptococcus pneumoniae is the main causal agent of pathologies that are increasingly resistant to antibiotic treatment. Clinical resistance of S. pneumoniae to β-lactam antibiotics is linked to multiple mutations of high molecular mass penicillin-binding proteins (H-PBPs), essential enzymes involved in the final steps of bacterial cell wall synthesis. H-PBPs from resistant bacteria have a reduced affinity for β-lactam and a decreased hydrolytic activity on substrate analogues. In S. pneumoniae, the gene coding for one of these H-PBPs, PBP2x, is located in the cell division cluster (DCW). We present here structural evidence linking multiple β-lactam resistance to amino acid substitutions in PBP2x within a buried cavity near the catalytic site that contains a structural water molecule. Site-directed mutation of amino acids in contact with this water molecule in the “sensitive” form of PBP2x produces mutants similar, in terms of β-lactam affinity and substrate hydrolysis, to altered PBP2x produced in resistant clinical isolates. A reverse mutation in a PBP2x variant from a clinically important resistant clone increases the acylation efficiency for β-lactams and substrate analogues. Furthermore, amino acid residues in contact with the structural water molecule are conserved in the equivalent H-PBPs of pathogenic Gram-positive cocci. We suggest that, probably via a local structural modification, the partial or complete loss of this water molecule reduces the acylation efficiency of PBP2x substrates to a point at which cell wall synthesis still occurs, but the sensitivity to therapeutic concentrations of β-lactam antibiotics is lost.
Resumo:
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact-epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
In this study, we aimed to evaluate the relationship between the rates of resistance of Pseudomonas aeruginosa to carbapenems and the levels and diversity of antibiotic consumption. Data were retrospectively collected from 20 acute care hospitals across 3 regions of Switzerland between 2006 and 2010. The main outcome of the present study was the rate of resistance to carbapenems among P. aeruginosa. Putative predictors included the total antibiotic consumption and carbapenem consumption in defined daily doses per 100 bed days, the proportion of very broad-spectrum antibiotics used, and the Peterson index. The present study confirmed a correlation between carbapenem use and carbapenem resistance rates at the hospital and regional levels. The impact of diversifying the range of antibiotics used against P. aeruginosa resistance was suggested by (i) a positive correlation in multivariate analysis between the above-mentioned resistance and the proportion of consumed antibiotics having a very broad spectrum of activity (coefficient = 1.77; 95% confidence interval, 0.58 to 2.96; P < 0.01) and (ii) a negative correlation between the resistance and diversity of antibiotic use as measured by the Peterson homogeneity index (coefficient = -0.52; P < 0.05). We conclude that promoting heterogeneity plus parsimony in the use of antibiotics appears to be a valuable strategy for minimizing the spread of carbapenem resistance in P. aeruginosa in hospitals.
Resumo:
Little is known about transmission and drug resistance of tuberculosis (TB) in Bauru, State of São Paulo. The objective of this study was to evaluate risk factors for transmission of Mycobacterium tuberculosis strains in this area. Strains were collected from patients attended at ambulatory services in the region and susceptibility towards the main first line antibiotics was determined and fingerprinting performed. A total of 57 strains were submitted to susceptibility testing: 23 (42.6%) were resistant to at least one drug while 3 (13%) were resistant against both rifampicin and isoniazide. Resistant strains had been isolated from patients that had not (n = 13) or had (n = 9) previously been submitted to anti-TB treatment, demonstrating a preoccupying high level of primary resistance in the context of the study. All strains were submitted to IS6110 restriction fragment length polymorphism (IS6110-RFLP) and double repetitive element PCR (DRE-PCR). Using IS6110-RFLP, 26.3% of the strains were clustered and one cluster of 3 patients included 2 HIV-infected individuals that had been hospitalized together during 16 days; clustering of strains of patients from the hospital was however not higher than that of patients attended at health posts. According to DRE-PCR, 55.3% belonged to a cluster, confirming the larger discriminatory power of IS6110-RFLP when compared to DRE-PCR, that should therefore be used as a screening procedure only. No clinical, epidemiological or microbiological characteristics were associated with clustering so risk factors for transmission of TB could not be defined in the present study.
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in pleural fluid. Since then, this organism has played a decisive role in biomedical science. From a biological point of view, it was extensively involved in the development of passive and active immunization by serotherapy and vaccination respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is today still a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia still has a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistant strains have emerged and increased dramatically over the last 15 years. During this period the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (1) intermediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/l) and (2) high level resistance (MCI > or = 2 mg/l). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains have been responsible for numerous therapeutic failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibiotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (1) avoiding excessive use of antibiotics, (2) the practice of microbiological sampling of infected foci before treatment, (3) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (4) adequate vaccination of populations at risk.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Objectives: To study how disinfectants affect antimicrobial susceptibility and phenotype of Salmonella enterica serovar Typhimurium SL1344. Methods: Wild-type strain SL1344 and its isogenic gyrA mutant were passaged daily for 7 days in subinhibitory concentrations, and separately for 16 days in gradually increasing concentrations of a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde (QACFG), an oxidizing compound blend (OXC), a phenolic tar acids-based disinfectant (TOP) and triclosan. The MICs of antimicrobials and antibiotics for populations and representative isolates and the proportion of cells resistant to the MICs for the wild-type were determined. Expression of acrB gene, growth at 37 degrees C and invasiveness of populations in Caco-2 intestinal epithelial cells were assessed. Results: QACFG and triclosan showed the highest selectivity for variants with reduced susceptibility to chloramphenicol, tetracycline, ampicillin, acriflavine and triclosan. Populations treated with the above biocides had reduced invasiveness in Caco-2 cells, and altered growth kinetics. Resistance to disinfectants was observed only after exposure to gradually increasing concentrations of triclosan, accompanied with a 2000-fold increase in its MIC. Growth in OXC and TOP did not affect the MICs of antibiotics, but resulted in the appearance of a proportion of cells resistant to the MIC of acriflavine and triclosan for the wild-type. Randomly selected stable variants from all populations, except the one treated with TOP, over-expressed acrB. Conclusions: In vitro exposure to QACFG and triclosan selects for Salmonella Typhimurium cells with reduced susceptibility to several antibiotics. This is associated with overexpression of AcrAB efflux pump, but accompanied with reduced invasiveness.
Resumo:
A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F1 rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume PCV and faecal egg count FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included BoxCox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without BoxCox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.
Resumo:
In this study, we aimed to evaluate the relationship between the rates of resistance of Pseudomonas aeruginosa to carbapenems and the levels and diversity of antibiotic consumption. Data were retrospectively collected from 20 acute care hospitals across 3 regions of Switzerland between 2006 and 2010. The main outcome of the present study was the rate of resistance to carbapenems among P. aeruginosa. Putative predictors included the total antibiotic consumption and carbapenem consumption in defined daily doses per 100 bed days, the proportion of very broad-spectrum antibiotics used, and the Peterson index. The present study confirmed a correlation between carbapenem use and carbapenem resistance rates at the hospital and regional levels. The impact of diversifying the range of antibiotics used against P. aeruginosa resistance was suggested by (i) a positive correlation in multivariate analysis between the above-mentioned resistance and the proportion of consumed antibiotics having a very broad spectrum of activity (coefficient = 1.77; 95% confidence interval, 0.58 to 2.96; P < 0.01) and (ii) a negative correlation between the resistance and diversity of antibiotic use as measured by the Peterson homogeneity index (coefficient = -0.52; P < 0.05). We conclude that promoting heterogeneity plus parsimony in the use of antibiotics appears to be a valuable strategy for minimizing the spread of carbapenem resistance in P. aeruginosa in hospitals.
Resumo:
The incidence rates of travelers' diarrhea (TD) have remained unchanged for the last fifty years. More recently, there have been increasing recommendations for self-initiated therapy and even prophylactic therapy for TD. There is no recent data on the in vitro activities of commonly used antibiotics for TD therapy and whether there have been any changes in susceptibilities over the last ten years. 456 enteropathogens were isolated from adult travelers to Mexico, India, and Guatemala between the years 2006 to 2008. MICs were determined for 10 different antimicrobials by the agar dilution method. Traditional antibiotics such as ampicillin, trimethoprim/sulfamethoxazole, and doxycycline continue to show high levels of resistance. Current first line antibiotic agents including fluoroquinolones and azithromycin had significantly higher MICs when compared to 10 years ago and MIC90 levels were beyond the CSLI cutoffs for resistance. There were significant geographical differences in resistance patterns when comparing Central America with India. Entertoxigenic Escherichia coli (ETEC) isolates were more resistant to ciprofloxacin (p=0.023), and levofloxacin (p=0.0078) in India; whereas, enteroaggregative Escherichia coli (EAEC) isolates from Central America showed more resistance. When compared to MICs of isolates 10 years prior, there was a four to ten-fold increase in MIC90s for ceftriaxone, ciprofloxacin, levofloxacin and azithromycin for both ETEC and EAEC. There were no significant changes in rifaximin MICs over the last ten years, which makes it a promising agent for TD. Rising MICs over time implicate the need for continuous surveillance of susceptibility patterns worldwide and for geography specific recommendations in TD therapy.^
Resumo:
Elevated expression of the marORAB multiple antibiotic-resistance operon enhances the resistance of Escherichia coli to various medically significant antibiotics. Transcription of the operon is repressed in vivo by the marR-encoded protein, MarR, and derepressed by salicylate and certain antibiotics. The possibility that repression results from MarR interacting with the marO operator-promoter region was studied in vitro using purified MarR and a DNA fragment containing marO. MarR formed at least two complexes with marO DNA, bound > 30-fold more tightly to it than to salmon sperm DNA, and protected two separate 21-bp sites within marO from digestion by DNase I. Site I abuts the downstream side of the putative -35 transcription-start signal and includes 4 bp of the -10 signal. Site II begins 13 bp downstream of site I, ending immediately before the first base pair of marR. Site II, approximately 80% homologous to site I, is not required for repression since a site II-deleted mutant (marO133) was repressed in trans by wild-type MarR. The absence of site II did not prevent MarR from complexing with the site I of marO133. Salicylate bound to MarR (Kd approximately 0.5 mM) and weakened the interaction of MarR with sites I and II. Thus, repression of the mar operon, which curbs the antibiotic resistance of E. coli, correlates with the formation of MarR-site I complexes. Salicylate appears to induce the mar operon by binding to MarR and inhibiting complex formation, whereas tetracycline and chloramphenicol, which neither bind MarR nor inhibit complex formation, must induce by an indirect mechanism.
Resumo:
The aim of this thesis was to investigate antibacterial agents for use in disinfectant formulation in conjunction with benzalkonium chloride (BKC), and if possible, to synthesise novel agents based upon successful structures. Development of resistance to antibacterial agents following long-term exposure of P. aeruginosa to BKC was also investigated, examining cross-resistance to clinically relevant antibiotics and determining mechanisms of resistance. In this study over 50 compounds were examined for antibacterial action against P. aeruginosa, both alone and in conjunction with BKC. Successful compounds were used to design novel agents, based upon the acridine ring structure, some of which showed synergy with BKC. In 15 of the 16 strains exposed to increasing concentrations of BKC, resistance to the disinfectant arose. Strains PAO1 and OO14 were examined further, each showing stable BKC resistance and a slightly varying profile of cross-resistance. In strain PAO1 alterations in the fatty acids of the cytoplasmic membrane, increase in expression of OprG, decrease in susceptibility to EDTA as an outer membrane permeabilising agent and an increase in negativity of the cell surface charge were observed as cells became more resistant to BKC. In strain OO14 a decrease in whole cell phosphatidylcholine content, a decrease in binding/uptake of BKC and an increase in cell surface hydrophobicity were observed as cells became more resistant to BKC. Resistance to tobramycin in strain OO14 was initially high, but fell as cells were adapted to BKC, this coincided with a quantitative reduction of plasmid DNA in the cells.
Resumo:
Staphylococcus epidermidis are common Gram-positive bacteria and are responsible for a number of life-threatening nosocomial infections. Treatment of S. epidermidis infection is problematic because the organism is usually resistant to many antibiotics. The high degree of resistance of this organism to a range of antibiotics and disinfectants is widely known. The aims of this thesis were to investigate and evaluate the susceptibility of isolates of S. epidermidis from various infections to chlorhexidine (CHX) and to other disinfectants such as benzalkonium chloride (BKC), triclosan (TLN) and povidone-iodine (PI). In addition, the mechanisms of resistance of S. epidermidis to chlorhexidine (the original isolates and strains adapted to chlorhexidine by serial passage) were examined and co-resistance to clinically relevant antibiotics investigated. In 3 of the 11 S. epidermidis strains passaged in increasing concentrations of chlorhexidine, resistance to the disinfectant arose (16-fold). These strains were examined further, each showing stable chlorhexidine resistance. Co-resistance to other disinfectants such as BKC, TLN and PI and changes in cell surface hydrophobicity were observed. Increases in resistance were accompanied by an increase in the proportion of neutral lipids and phospholipids in the cell membrane. This increase was most marked in diphosphatidylglycerol. These observations suggest that some strains of S. epidermidis can become resistant to chlorhexidine and related disinfectants/antiseptics by continual exposure. The mechanisms of resistance appear to be related to changes in membrane lipid compositions.