866 resultados para Reproducing kernel
Resumo:
Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Turbulence-transport-chemistry interaction plays a crucial role on the flame surface geometry, local and global reactionrates, and therefore, on the propagation and extinction characteristics of intensely turbulent, premixed flames encountered in LPP gas-turbine combustors. The aim of the present work is to understand these interaction effects on the flame surface annihilation and extinction of lean premixed flames, interacting with near isotropic turbulence. As an example case, lean premixed H-2-air mixture is considered so as to enable inclusion of detailed chemistry effects in Direct Numerical Simulations (DNS). The work is carried out in two phases namely, statistically planar flames and ignition kernel, both interacting with near isotropic turbulence, using the recently proposed Flame Particle Tracking (FPT) technique. Flame particles are surface points residing and commoving with an iso-scalar surface within a premixed flame. Tracking flame particles allows us to study the evolution of propagating surface locations uniquely identified with time. In this work, using DNS and FPT we study the flame speed, reaction rate and transport histories of such flame particles residing on iso-scalar surfaces. An analytical expression for the local displacement flame speed (SO is derived, and the contribution of transport and chemistry on the displacement flame speed is identified. An examination of the results of the planar case leads to a conclusion that the cause of variation in S-d may be attributed to the effects of turbulent transport and heat release rate. In the second phase of this work, the sustenance of an ignition kernel is examined in light of the S-curve. A newly proposed Damkohler number accounting for local turbulent transport and reaction rates is found to explain either the sustenance or otherwise propagation of flame kernels in near isotropic turbulence.
Resumo:
In the present work, the effect of deformation mode (uniaxial compression, rolling and torsion) on the microstructural heterogeneities in a commercial purity Ni is reported. For a given equivalent von Mises strain, samples subjected to torsion have shown higher fraction of high-angle boundaries, kernel average misorientation and recrystallization nuclei when compared to uniaxially compressed and rolled samples. This is attributed to the differences in the slip system activity under different modes of deformation.
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.
Resumo:
The Exact Cover problem takes a universe U of n elements, a family F of m subsets of U and a positive integer k, and decides whether there exists a subfamily(set cover) F' of size at most k such that each element is covered by exactly one set. The Unique Cover problem also takes the same input and decides whether there is a subfamily F' subset of F such that at least k of the elements F' covers are covered uniquely(by exactly one set). Both these problems are known to be NP-complete. In the parameterized setting, when parameterized by k, Exact Cover is W1]-hard. While Unique Cover is FPT under the same parameter, it is known to not admit a polynomial kernel under standard complexity-theoretic assumptions. In this paper, we investigate these two problems under the assumption that every set satisfies a given geometric property Pi. Specifically, we consider the universe to be a set of n points in a real space R-d, d being a positive integer. When d = 2 we consider the problem when. requires all sets to be unit squares or lines. When d > 2, we consider the problem where. requires all sets to be hyperplanes in R-d. These special versions of the problems are also known to be NP-complete. When parameterizing by k, the Unique Cover problem has a polynomial size kernel for all the above geometric versions. The Exact Cover problem turns out to be W1]-hard for squares, but FPT for lines and hyperplanes. Further, we also consider the Unique Set Cover problem, which takes the same input and decides whether there is a set cover which covers at least k elements uniquely. To the best of our knowledge, this is a new problem, and we show that it is NP-complete (even for the case of lines). In fact, the problem turns out to be W1]-hard in the abstract setting, when parameterized by k. However, when we restrict ourselves to the lines and hyperplanes versions, we obtain FPT algorithms.
Resumo:
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 2646642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of = 350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Resumo:
We address the problem of phase retrieval from Fourier transform magnitude spectrum for continuous-time signals that lie in a shift-invariant space spanned by integer shifts of a generator kernel. The phase retrieval problem for such signals is formulated as one of reconstructing the combining coefficients in the shift-invariant basis expansion. We develop sufficient conditions on the coefficients and the bases to guarantee exact phase retrieval, by which we mean reconstruction up to a global phase factor. We present a new class of discrete-domain signals that are not necessarily minimum-phase, but allow for exact phase retrieval from their Fourier magnitude spectra. We also establish Hilbert transform relations between log-magnitude and phase spectra for this class of discrete signals. It turns out that the corresponding continuous-domain counterparts need not satisfy a Hilbert transform relation; notwithstanding, the continuous-domain signals can be reconstructed from their Fourier magnitude spectra. We validate the reconstruction guarantees through simulations for some important classes of signals such as bandlimited signals and piecewise-smooth signals. We also present an application of the proposed phase retrieval technique for artifact-free signal reconstruction in frequency-domain optical-coherence tomography (FDOCT).
Resumo:
In the POSSIBLE WINNER problem in computational social choice theory, we are given a set of partial preferences and the question is whether a distinguished candidate could be made winner by extending the partial preferences to linear preferences. Previous work has provided, for many common voting rules, fixed parameter tractable algorithms for the POSSIBLE WINNER problem, with number of candidates as the parameter. However, the corresponding kernelization question is still open and in fact, has been mentioned as a key research challenge 10]. In this paper, we settle this open question for many common voting rules. We show that the POSSIBLE WINNER problem for maximin, Copeland, Bucklin, ranked pairs, and a class of scoring rules that includes the Borda voting rule does not admit a polynomial kernel with the number of candidates as the parameter. We show however that the COALITIONAL MANIPULATION problem which is an important special case of the POSSIBLE WINNER problem does admit a polynomial kernel for maximin, Copeland, ranked pairs, and a class of scoring rules that includes the Borda voting rule, when the number of manipulators is polynomial in the number of candidates. A significant conclusion of our work is that the POSSIBLE WINNER problem is harder than the COALITIONAL MANIPULATION problem since the COALITIONAL MANIPULATION problem admits a polynomial kernel whereas the POSSIBLE WINNER problem does not admit a polynomial kernel. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
It was demonstrated in earlier work that, by approximating its range kernel using shiftable functions, the nonlinear bilateral filter can be computed using a series of fast convolutions. Previous approaches based on shiftable approximation have, however, been restricted to Gaussian range kernels. In this work, we propose a novel approximation that can be applied to any range kernel, provided it has a pointwise-convergent Fourier series. More specifically, we propose to approximate the Gaussian range kernel of the bilateral filter using a Fourier basis, where the coefficients of the basis are obtained by solving a series of least-squares problems. The coefficients can be efficiently computed using a recursive form of the QR decomposition. By controlling the cardinality of the Fourier basis, we can obtain a good tradeoff between the run-time and the filtering accuracy. In particular, we are able to guarantee subpixel accuracy for the overall filtering, which is not provided by the most existing methods for fast bilateral filtering. We present simulation results to demonstrate the speed and accuracy of the proposed algorithm.
Resumo:
The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.
Resumo:
In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace inversion technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the DSIF can be greatly reduced.
Resumo:
Potential energy can be approximated by ‘‘pair-functional’’ potentials which is composed of pair potentials and embedding energy. Pair potentials are grouped according to discrete directions of atomic bonds such that each group is represented by an orientational component. Meanwhile, another kind of component, the volumetric one is derived from embedding energy. Damage and fracture are the changing and breaking of atomic bonds at the most fundamental level and have been reflected by the changing of these components’ properties. Therefore, material is treated as a component assembly, and its constitutive equations are formed by means of assembling these two kinds of components’ response functions. This material model is referred to as the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness and intrinsic induced anisotropy, etc.
Resumo:
By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution.
Resumo:
Data on the occurrence of solidification cracking in low alloy steel welds have been analysed using a classification neural network based on a Bayesian framework. It has thereby been possible to express quantitatively the effect of variables such as the chemical composition, welding conditions, and weld geometry, on the tendency for solidification cracking during solidification. The ability of the network to express the relationship in a suitably non-linear form is shown to be vital in reproducing known experimental phenomena. © 1996 The Institute of Materials.
Resumo:
In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.