808 resultados para Renewable energy sources.
Resumo:
Energy indicators are tools to support decision-making on energy. The growing debate on sustainable development, contributed to the energy indicators began to incorporate, besides the traditional economic, social and environmental information. Therefore, taking sustainable development into account, it is important to know contributions and limitations of these tools. The overall goal of this study is to analyze the contributions and limitations of the energy indicators as assets to support sustainable development.This study can be classified as descriptive because it relies on bibliographical and documental material. As a result of documental analysis, 55 energy indicators for sustainable development (EISD) were selected. The selection took place by identification of those indicators through the institutions International Atomic Energy Agency (IAEA), Helio International and World Energy Council (WEC), among 19 institutions involved in research on energy identified in the survey. The study stresses that most of the selected indicators focuses on the economic dimension, 19 EISDs (34.54%), followed by 10 EISDs (18.18%) focused on the environmental dimension, 9 EISDs (16.36%) focused on the social issues, 7 EISDs (12.45%) are classified as resilience, 4 EISDs (7.27%) is about governance, 3 EISDs (5.45%) focused on vulnerability and 3 EISDs (5.45%) is about policy. Despite the inclusion of indicators associated with other dimensions than economy, information provided by those indicators emerges as their own limitation. Because, recently, indicators’ information were used to promote sustainable development as well as the opposite. Additionally, the study identified EISDs whose components were not specified. They may enable generation of information far from the real scenario, if components dissociated EISD would be taking into consideration or even the non-consideration of relevant components. Despite limitations, EISDs assisting decision-makers contributes to the pursuit of sustainable development. But they may be improved through information about environmental issues, such as emission of atmospheric pollutants, soil and water, resulting from energy sources, helps identifying which sources are more or less harmful for sustainable development. However, difficulty in collecting data, identifying the components for calculation of each indicator and even interpretation of this, as analyzed, may not only fail to contribute to sustainable development, as can delay taking corrective or preventive decisions.
Resumo:
Dissertação de Mestrado Integrado em Engenharia da Energia e do Ambiente
Resumo:
Na procura de melhores combustíveis para a produção de energia térmica e energia elétrica, a biomassa apresenta-se como uma das fontes de energia renováveis menos prejudiciais ao meio ambiente, esta é considerada como um recurso neutro do ponto de vista de emissões de dióxido de carbono. Atualmente, a tecnologia predominante no domínio da conversão energética de biomassa por via termoquímica é a combustão. Contudo, verifica-se a procura de combustíveis de melhor qualidade produzidos a partir de biomassa, como por exemplo na forma gasosa (gás de combustível). A produção deste tipo de combustíveis gasosos envolvendo processos de gasificação carece do desenvolvimento de tecnologia que permita obter um gás combustível com características adequadas às utilizações pretendidas. Os problemas mais relevantes relacionados com a conversão termoquímica da biomassa incluem a produção de cinzas e de alcatrões, estes podem levar a vários problemas operatórios. O presente trabalho teve dois objetivos, a caracterização das cinzas resultantes do processo de combustão de biomassa e o estudo do efeito da aplicação das cinzas para melhorar as propriedades do gás produzido durante o processo de gasificação de biomassa, principalmente na redução de compostos condensáveis (alcatrões). As cinzas volantes da combustão de biomassa analisadas apresentam na sua constituição elementos químicos característicos da biomassa, onde o cálcio apresenta-se em concentrações mais elevadas. Em menores concentrações encontram-se sódio, magnésio, fósforo, enxofre, cloro, potássio, manganês e ferro. As cinzas de fundo, pelo contributo que a areia do leito tem, são caracterizadas por conterem grandes concentrações de silício. Durante os processos de gasificação de biomassa a concentração de compostos condensáveis diminuiu com o aumento da razão de equivalência. As cinzas, colocadas no reator de leito fixo, apresentam um efeito positivo sobre a qualidade do gás, nomeadamente um aumento de 47,8% no teor de H2 e de 11% de CO, consequentemente obteve-se um gás combustível com PCI (poder calorífico inferior) mais elevado.
Resumo:
The presented work is related to the use of solar energy for the needs of heating and electricity for a single house located in Poland. Electricity will provided by energy conversion in the turbine by means of Organic Rankine Cycle (ORC), in which the operating medium (water heated in solar collector) is heating refrigerator in the heating exchanger. The solar installation is integrated with heat accumulator and wood boiler, which is used in the situation that collector is not enough to fill requirements of thermal comfort. There are chosen also all the necessary components of the system. In the work is also performed the economic assessment, by F chart method, to evaluate the profitability of the project, taking into total costs and savings.
Resumo:
Methanol is an important and versatile compound with various uses as a fuel and a feedstock chemical. Methanol is also a potential chemical energy carrier. Due to the fluctuating nature of renewable energy sources such as wind or solar, storage of energy is required to balance the varying supply and demand. Excess electrical energy generated at peak periods can be stored by using the energy in the production of chemical compounds. The conventional industrial production of methanol is based on the gas-phase synthesis from synthesis gas generated from fossil sources, primarily natural gas. Methanol can also be produced by hydrogenation of CO2. The production of methanol from CO2 captured from emission sources or even directly from the atmosphere would allow sustainable production based on a nearly limitless carbon source, while helping to reduce the increasing CO2 concentration in the atmosphere. Hydrogen for synthesis can be produced by electrolysis of water utilizing renewable electricity. A new liquid-phase methanol synthesis process has been proposed. In this process, a conventional methanol synthesis catalyst is mixed in suspension with a liquid alcohol solvent. The alcohol acts as a catalytic solvent by enabling a new reaction route, potentially allowing the synthesis of methanol at lower temperatures and pressures compared to conventional processes. For this thesis, the alcohol promoted liquid phase methanol synthesis process was tested at laboratory scale. Batch and semibatch reaction experiments were performed in an autoclave reactor, using a conventional Cu/ZnO catalyst and ethanol and 2-butanol as the alcoholic solvents. Experiments were performed at the pressure range of 30-60 bar and at temperatures of 160-200 °C. The productivity of methanol was found to increase with increasing pressure and temperature. In the studied process conditions a maximum volumetric productivity of 1.9 g of methanol per liter of solvent per hour was obtained, while the maximum catalyst specific productivity was found to be 40.2 g of methanol per kg of catalyst per hour. The productivity values are low compared to both industrial synthesis and to gas-phase synthesis from CO2. However, the reaction temperatures and pressures employed were lower compared to gas-phase processes. While the productivity is not high enough for large-scale industrial operation, the milder reaction conditions and simple operation could prove useful for small-scale operations. Finally, a preliminary design for an alcohol promoted, liquid-phase methanol synthesis process was created using the data obtained from the experiments. The demonstration scale process was scaled to an electrolyzer unit producing 1 Nm3 of hydrogen per hour. This Master’s thesis is closely connected to LUT REFLEX-platform.
Resumo:
Brazil is internationally acknowledged for its renewable sources, most notably, hydroelectric power plant projects which correspond to 65% of electricity production supply to the National Interconnected System. The main question behind this research is: what are the weights and the relative importance of the variables which have influence on the decision making process for the expansion of hydroelectric generation projects in Parana? The main objective is to propose a multi-criteria decision procedure, in association with water sources options that take into consideration the weight and relative importance of the alternatives having influence on the decision by enterprises in the generation of electricity in the state of Paraná. As far as the approach to the problem is concerned, this research can be classified as having mixed methodologies, applying Content Analysis, Delphi technique and the Analytic Hierarchy Process. Following Delphi methodology, a group of 21 was selected for data collection, all of those linked to Paranaense hydroelectricity market. And the main result was the construction of a decision tree in which it was possible to identify the importance and relative weight of the elements associated with the four dimensions of energy. In environmental dimension, the highest relative weight was placed on the loading capacity of Parana system; the economic dimension, the amortization of investment; in social dimension, the generation of direct work places and in institutional dimension, the availability of suitable sources of financing. Policy makers and business managers make their decisions based on specific criteria related to the organization segment, market information, economic and political behavior among other indicators that guide them in dealing with the typical tradeoffs of projects in hydropower area. The results obtained in the decision tree show that the economic bias is still the main factor in making investment decisions. However, environmental impacts on the State loading capacity, income generation, providing opportunities for direct as well as indirect jobs. And at an institutional level, the absence of funding sources show that the perception of experts is focused on other issues beyond the logic behind development per se. The order of priority of variables in this study indicates that in the current environment of uncertainty in the Brazilian economy as many variables must be analyzed and compared in order to optimize the scarce resources available to expand local development in relation to Paranaense water matrix.
Resumo:
Los sistemas fotovoltaicos son fuentes emergentes de energías renovables que generan electricidad a partir de la radiación solar. El monitoreo de los sistemas fotovoltaicos aislados proporciona información necesaria que permite a sus propietarios mantener, operar y controlar estos sistemas, reduciendo los costes de operación y evitando indeseadas interrupciones en el suministro eléctrico de zonas aisladas. En este artículo, se propone el desarrollo de una plataforma para el monitoreo de sistemas fotovoltaicos aislados en el Ecuador con el objetivo fundamental de desarrollar una solución escalable, basada en el uso de software libre, en el empleo de sensores de bajo consumo y en el desarrollo de servicios web en la modalidad ‘Software as a Service’ (SaaS) para el procesamiento, gestión y publicación de información registrada y la creación de un innovador centro de control solar fotovoltaico en el Ecuador.
Resumo:
According to many scientists third industrial revolution has already began and this primarily means the transition to renewable energy sources. Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the roads. Massive consumption of fossil fuels leads to environmental pollution, therefore, biofuels are offered as an alternative. For example, the application of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. One of the most important technologies, which has been already explored at the commercial level, is the production of a liquid biofuel applicable in compression-ignition engines (or diesel engines), from biomass rich in fats and oils. This biofuel is generically referred as biodiesel, and consists essentially of a mixture of FAME's (fatty acid methyl esters). This current work describes modern approaches of biodiesel production from vegetable oil and subsequent analysis of produced biodiesel main characteristics such as density, acidity, iodine value and FAME content.
Resumo:
Portugal, no intuito de alcançar metas ambientais e económicas a que se propôs, e de reduzir a dependência das importações de energia, tem aumentado o investimento em eletricidade produzida a partir de energias renováveis (FER-E). Apesar do consenso em torno da sua utilização, as energias renováveis deparam-se com barreiras de várias ordens que dificultam a sua difusão no mercado. A atuação do Estado neste enquadramento passa por criar modelos de promoção da FER-E. A maioria dos países da União Europeia, incluindo Portugal, aplica as tarifas feed-in (FIT) como instrumento central de suporte à FER-E, inserido num modelo de apoio que contempla outros parâmetros de construção considerados críticos para o seu sucesso. No seguimento do estágio realizado na empresa Senvion Portugal a presente tese explora os programas e modelos de apoio às FER-E em Portugal, nomeadamente as que se referem à energia eólica. Bem como os trabalhos realizados com as equipas de O&M e a realização de um estudo de viabilidade económica da substituição de aerogeradores no parque eólico de Picos Verdes II.
Resumo:
Dissertação de Mestrado, Engenharia Elétrica e Eletrónica, Especialização em Sistemas de Energia e Controlo, Instituto Superior de Engenharia, Universidade do Algarve, 2016
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
Resumo:
Michigan depends heavily on fossil fuels to generate electricity. Compared with fossil fuels, electricity generation from renewable energy produces less pollutants emissions. A Renewable Portfolio Standard (RPS) is a mandate that requires electric utilities to generate a certain amount of electricity from renewable energy sources. This thesis applies the Cost-Benefits Analysis (CBA) method to investigate the impacts of implementing a 25% in Michigan by 2025. It is found that a 25% RPS will create about $20.12 billion in net benefits to the State. Moreover, if current tax credit policies will not change until 2025, its net present value will increase to about $26.59 billion. Based on the results of this CBA, a 25% RPS should be approved. The result of future studies on the same issue can be improved if more state specific data become available.
Resumo:
Future power grids are envisioned to be serviced by heterogeneous arrangements of renewable energy sources. Due to their stochastic nature, energy storage distribution and management are pivotal in realizing microgrids serviced heavily by renewable energy assets. Identifying the required response characteristics to meet the operational requirements of a power grid are of great importance and must be illuminated in order to discern optimal hardware topologies. Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) presents the tools to identify such characteristics. By using energy storage as actuation within the closed loop controller, the response requirements may be identified while providing a decoupled controller solution. A DC microgrid servicing a fixed RC load through source and bus level storage managed by HSSPFC was realized in hardware. A procedure was developed to calibrate the DC microgrid architecture of this work to the reduced order model used by the HSSPFC law. Storage requirements were examined through simulation and experimental testing. Bandwidth contributions between feed forward and PI components of the HSSPFC law are illuminated and suggest the need for well-known system losses to prevent the need for additional overhead in storage allocations. The following work outlines the steps taken in realizing a DC microgrid and presents design considerations for system calibration and storage requirements per the closed loop controls for future DC microgrids.
Resumo:
Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.