974 resultados para Remote Sensing and LiDAR Data Water Quality
Resumo:
The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However. in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pangs pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and 'uniform pattern' characteristic of aquifer drainage with, superimposed, a series of 'flashier' spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the 'flashier' responses, The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.
Resumo:
In January 1992, there was a major pollutant event for the River Canon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CBH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Canon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Camon are described in relation to these two distinct hydrogeochemical groupings. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry
Resumo:
Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.
Resumo:
The combination of radar and lidar in space offers the unique potential to retrieve vertical profiles of ice water content and particle size globally, and two algorithms developed recently claim to have overcome the principal difficulty with this approach-that of correcting the lidar signal for extinction. In this paper "blind tests" of these algorithms are carried out, using realistic 94-GHz radar and 355-nm lidar backscatter profiles simulated from aircraft-measured size spectra, and including the effects of molecular scattering, multiple scattering, and instrument noise. Radiation calculations are performed on the true and retrieved microphysical profiles to estimate the accuracy with which radiative flux profiles could be inferred remotely. It is found that the visible extinction profile can be retrieved independent of assumptions on the nature of the size distribution, the habit of the particles, the mean extinction-to-backscatter ratio, or errors in instrument calibration. Local errors in retrieved extinction can occur in proportion to local fluctuations in the extinction-to-backscatter ratio, but down to 400 m above the height of the lowest lidar return, optical depth is typically retrieved to better than 0.2. Retrieval uncertainties are greater at the far end of the profile, and errors in total optical depth can exceed 1, which changes the shortwave radiative effect of the cloud by around 20%. Longwave fluxes are much less sensitive to errors in total optical depth, and may generally be calculated to better than 2 W m(-2) throughout the profile. It is important for retrieval algorithms to account for the effects of lidar multiple scattering, because if this is neglected, then optical depth is underestimated by approximately 35%, resulting in cloud radiative effects being underestimated by around 30% in the shortwave and 15% in the longwave. Unlike the extinction coefficient, the inferred ice water content and particle size can vary by 30%, depending on the assumed mass-size relationship (a problem common to all remote retrieval algorithms). However, radiative fluxes are almost completely determined by the extinction profile, and if this is correct, then errors in these other parameters have only a small effect in the shortwave (around 6%, compared to that of clear sky) and a negligible effect in the longwave.
Resumo:
The European research project TIDE (Tidal Inlets Dynamics and Environment) is developing and validating coupled models describing the morphological, biological and ecological evolution of tidal environments. The interactions between the physical and biological processes occurring in these regions requires that the system be studied as a whole rather than as separate parts. Extensive use of remote sensing including LiDAR is being made to provide validation data for the modelling. This paper describes the different uses of LiDAR within the project and their relevance to the TIDE science objectives. LiDAR data have been acquired from three different environments, the Venice Lagoon in Italy, Morecambe Bay in England, and the Eden estuary in Scotland. LiDAR accuracy at each site has been evaluated using ground reference data acquired with differential GPS. A semi-automatic technique has been developed to extract tidal channel networks from LiDAR data either used alone or fused with aerial photography. While the resulting networks may require some correction, the procedure does allow network extraction over large areas using objective criteria and reduces fieldwork requirements. The networks extracted may subsequently be used in geomorphological analyses, for example to describe the drainage patterns induced by networks and to examine the rate of change of networks. Estimation of the heights of the low and sparse vegetation on marshes is being investigated by analysis of the statistical distribution of the measured LiDAR heights. Species having different mean heights may be separated using the first-order moments of the height distribution.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.