972 resultados para Reliability prediction
Reliability of transient elastography for the diagnosis of advanced fibrosis in chronic hepatitis C.
Resumo:
The aim of this study was to determine the effect of using video analysis software on the interrater reliability of visual assessments of gait videos in children with cerebral palsy. Two clinicians viewed the same random selection of 20 sagittal and frontal video recordings of 12 children with cerebral palsy routinely acquired during outpatient rehabilitation clinics. Both observers rated these videos in a random sequence for each lower limb using the Observational Gait Scale, once with standard video software and another with video analysis software (Dartfish(®)) which can perform angle and timing measurements. The video analysis software improved interrater agreement, measured by weighted Cohen's kappas, for the total score (κ 0.778→0.809) and all of the items that required angle and/or timing measurements (knee position mid-stance κ 0.344→0.591; hindfoot position mid-stance κ 0.160→0.346; foot contact mid-stance κ 0.700→0.854; timing of heel rise κ 0.769→0.835). The use of video analysis software is an efficient approach to improve the reliability of visual video assessments.
Resumo:
Aquest treball fa una revisió de mesures experimentals i càlculs teòrics sobre la dinàmica de col·lisions i reaccions moleculars. Els experiments se centren en col·lisions, a energies intermèdies, que involucren sistemes del tipus ió-àtom i iómolècula, per les quals es mesuren seccions eficaces totals, estat a estat, així com aquelles que discerneixen les diferents contribucions del moment angular d'espín. Els resultats obtinguts s'interpreten satisfactòriament en termes d'acoblaments no adiabàtics entre els diferents estats electrònics dels sistemes col·lisionants. Els càlculs teòrics utilitzen la metodologia quasiclàssica, així com metodologies mecanoquàntiques recentment desenvolupades, tant aproximades com exactes. S'han obtingut resultats totalment convergits per sistemes tipus, mentre que s'han analitzat, de manera detallada i extensiva, les característiques dinàmiques de sistemes triatòmic, tetraatòmic i pentaatòmic.
Resumo:
Ventilator-associated pneumonia (VAP) affects mortality, morbidity and cost of critical care. Reliable risk estimation might improve end-of-life decisions, resource allocation and outcome. Several scoring systems for survival prediction have been established and optimised over the last decades. Recently, new biomarkers have gained interest in the prognostic field. We assessed whether midregional pro-atrial natriuretic peptide (MR-proANP) and procalcitonin (PCT) improve the predictive value of the Simplified Acute Physiologic Score (SAPS) II and Sequential Related Organ Failure Assessment (SOFA) in VAP. Specified end-points of a prospective multinational trial including 101 patients with VAP were analysed. Death <28 days after VAP onset was the primary end-point. MR-proANP and PCT were elevated at the onset of VAP in nonsurvivors compared with survivors (p = 0.003 and p = 0.017, respectively) and their slope of decline differed significantly (p = 0.018 and p = 0.039, respectively). Patients with the highest MR-proANP quartile at VAP onset were at increased risk for death (log rank p = 0.013). In a logistic regression model, MR-proANP was identified as the best predictor of survival. Adding MR-proANP and PCT to SAPS II and SOFA improved their predictive properties (area under the curve 0.895 and 0.880). We conclude that the combination of two biomarkers, MR-proANP and PCT, improve survival prediction of clinical severity scores in VAP.
Resumo:
MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.
Resumo:
There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48h with the neurotoxicant methyl mercury chloride (0.1-100muM) and the brain stimulant caffeine (1-100muM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1muM), and treatment-dependent cluster formations for caffeine (1-100muM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
The National Academies has stressed the need to develop quantifiable measures for methods that are currently qualitative in nature, such as the examination of fingerprints. Current protocols and procedures to perform these examinations rely heavily on a succession of subjective decisions, from the initial acceptance of evidence for probative value to the final assessment of forensic results. This project studied the concept of sufficiency associated with the decisions made by latent print examiners at the end of the various phases of the examination process. During this 2-year effort, a web‐based interface was designed to capture the observations of 146 latent print examiners and trainees on 15 pairs of latent/control prints. Two main findings resulted from the study: The concept of sufficiency is driven mainly by the number and spatial relationships between the minutiae observed on the latent and control prints. Data indicate that demographics (training, certification, years of experience) or non‐minutiae based features (such as level 3 features) do not play a major role in examiners' decisions; Significant variability was observed between detecting and interpreting friction ridge features and at all levels of details, as well as for factors that have the potential to influence the examination process, such as degradation, distortion, or influence of the background and the development technique.
Resumo:
On the basis of literature values, the relationship between fat-free mass (FFM), fat mass (FM), and resting energy expenditure [REE (kJ/24 h)] was determined for 213 adults (86 males, 127 females). The objectives were to develop a mathematical model to predict REE based on body composition and to evaluate the contribution of FFM and FM to REE. The following regression equations were derived: 1) REE = 1265 + (93.3 x FFM) (r2 = 0.727, P < 0.001); 2) REE = 1114 + (90.4 x FFM) + (13.2 x FM) (R2 = 0.743, P < 0.001); and 3) REE = (108 x FFM) + (16.9 x FM) (R2 = 0.986, P < 0.001). FM explained only a small part of the variation remaining after FFM was accounted for. The models that include both FFM and FM are useful in examination of the changes in REE that occur with a change in both the FFM and FM. To account for more of the variability in REE, FFM will have to be divided into organ mass and skeletal muscle mass in future analyses.