465 resultados para Relativity
Resumo:
Durante los últimos años han aparecido un gran número de publicaciones sobre las perspectivas de evolución del mundo de los museos. La reflexión sobre el futuro de estas instituciones no es reciente: la prospectiva, método dirigido a elaborar posibles escenarios en el futuro, no es estrictamente hablando museológica, pero necesariamente interesa al museólogo interrogarse sobre el campo museal. A decir verdad, en su mayoría son profesionales del museo quienes han escrito sobre el tema (en el contexto museal) para adaptar la institución a los nuevos retos. Algunos museólogos, se han arriesgado a este ejercicio, de manera más o menos afortunada. El artículo pretende, después de presentar la literatura prospectiva sobre el museo durante los últimos cincuenta años, y de analizar los recientes resultados de los informes de prospectiva, interrogarse sobre la contribución específica de una reflexión museológica acerca del futuro de los museos más allá de los ejes clásicos (demografía, economía, nuevas tecnologías) que se utilizan con más frecuencia.
Resumo:
Black hole's response to external perturbations will carry significant information about these exotic objects. Its response, shortly after the initial `kick', is known to be ruled by the damped oscillation of the perturbating eld, called quasinormal modes(QNMs), followed by the tails of decay and is the characteristic of the background black hole spacetime. In the last three decades, several shortcomings came out in the Einstein's General Theory of Relativity(GTR). Such issues come, especially, from observational cosmology and quantum eld theory. In the rst case, for example, the observed accelerated expansion of the universe and the hypothesized mysterious dark energy still lack a satisfactory explanation. Secondly, GTR is a classical theory which does not work as a fundamental theory, when one wants to achieve a full quantum description of gravity. Due to these facts modi cation to GTR or alternative theories for gravity have been considered. Two potential approaches towards these problems are the quintessence model for dark energy and Ho rava-Lifshitz(HL) gravity. Quintessence is a dynamical model of dark energy which is often realized by scalar eld mechanism. HL gravity is the recently proposed theory of gravity, which is renormalizable in power counting arguments. The two models are considered as a potential candidate in explaining these issues.
Resumo:
In this thesis, wind wave prediction and analysis in the Southern Caspian Sea are surveyed. Because of very much importance and application of this matter in reducing vital and financial damages or marine activities, such as monitoring marine pollution, designing marine structure, shipping, fishing, offshore industry, tourism and etc, gave attention by some marine activities. In this study are used the Caspian Sea topography data that are extracted from the Caspian Sea Hydrography map of Iran Armed Forces Geographical Organization and the I 0 meter wind field data that are extracted from the transmitted GTS synoptic data of regional centers to Forecasting Center of Iran Meteorological Organization for wave prediction and is used the 20012 wave are recorded by the oil company's buoy that was located at distance 28 Kilometers from Neka shore for wave analysis. The results of this research are as follows: - Because of disagreement between the prediction results of SMB method in the Caspian sea and wave data of the Anzali and Neka buoys. The SMB method isn't able to Predict wave characteristics in the Southern Caspian Sea. - Because of good relativity agreement between the WAM model output in the Caspian Sea and wave data of the Anzali buoy. The WAM model is able to predict wave characteristics in the southern Caspian Sea with high relativity accuracy. The extreme wave height distribution function for fitting to the Southern Caspian Sea wave data is obtained by determining free parameters of Poisson-Gumbel function through moment method. These parameters are as below: A=2.41, B=0.33. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by above function with the wave data of Neka buoy is about %35. The 100-year return value of the Southern Caspian Sea significant height wave is about 4.97 meter. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by statistical model of peak over threshold with the wave data of Neka buoy is about %2.28. The parametric relation for fitting to the Southern Caspian Sea frequency spectra is obtained by determining free parameters of the Strekalov, Massel and Krylov etal_ multipeak spectra through mathematical method. These parameters are as below: A = 2.9 B=26.26, C=0.0016 m=0.19 and n=3.69. The maximum relative error between calculated free parameters of the Southern Caspian Sea multipeak spectrum with the proposed free parameters of double-peaked spectrum by Massel and Strekalov on the experimental data from the Caspian Sea is about 36.1 % in spectrum energetic part and is about 74M% in spectrum high frequency part. The peak over threshold waverose of the Southern Caspian Sea shows that maximum occurrence probability of wave height is relevant to waves with 2-2.5 meters wave fhe error sources in the statistical analysis are mainly due to: l) the missing wave data in 2 years duration through battery discharge of Neka buoy. 2) the deportation %15 of significant height annual mean in single year than long period average value that is caused by lack of adequate measurement on oceanic waves, and the error sources in the spectral analysis are mainly due to above- mentioned items and low accurate of the proposed free parameters of double-peaked spectrum on the experimental data from the Caspian Sea.
Resumo:
Value and reasons for action are often cited by rationalists and moral realists as providing a desire-independent foundation for normativity. Those maintaining instead that normativity is dependent upon motivation often deny that anything called '"value" or "reasons" exists. According to the interest-relational theory, something has value relative to some perspective of desire just in case it satisfies those desires, and a consideration is a reason for some action just in case it indicates that something of value will be accomplished by that action. Value judgements therefore describe real properties of objects and actions, but have no normative significance independent of desires. It is argued that only the interest-relational theory can account for the practical significance of value and reasons for action. Against the Kantian hypothesis of prescriptive rational norms, I attack the alleged instrumental norm or hypothetical imperative, showing that the normative force for taking the means to our ends is explicable in terms of our desire for the end, and not as a command of reason. This analysis also provides a solution to the puzzle concerning the connection between value judgement and motivation. While it is possible to hold value judgements without motivation, the connection is more than accidental. This is because value judgements are usually but not always made from the perspective of desires that actually motivate the speaker. In the normal case judgement entails motivation. But often we conversationally borrow external perspectives of desire, and subsequent judgements do not entail motivation. This analysis drives a critique of a common practice as a misuse of normative language. The "absolutist" attempts to use and, as philosopher, analyze normative language in such a way as to justify the imposition of certain interests over others. But these uses and analyses are incoherent - in denying relativity to particular desires they conflict with the actual meaning of these utterances, which is always indexed to some particular set of desires.
Resumo:
Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann–Lamaître–Robertson–Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé–Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
Resumo:
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.
Resumo:
In the context of ƒ (R) gravity theories, we show that the apparent mass of a neutron star as seen from an observer at infinity is numerically calculable but requires careful matching, first at the star’s edge, between interior and exterior solutions, none of them being totally Schwarzschild-like but presenting instead small oscillations of the curvature scalar R; and second at large radii, where the Newtonian potential is used to identify the mass of the neutron star. We find that for the same equation of state, this mass definition is always larger than its general relativistic counterpart. We exemplify this with quadratic R^2 and Hu-Sawicki-like modifications of the standard General Relativity action. Therefore, the finding of two-solar mass neutron stars basically imposes no constraint on stable ƒ (R) theories. However, star radii are in general smaller than in General Relativity, which can give an observational handle on such classes of models at the astrophysical level. Both larger masses and smaller matter radii are due to much of the apparent effective energy residing in the outer metric for scalar-tensor theories. Finally, because the ƒ (R) neutron star masses can be much larger than General Relativity counterparts, the total energy available for radiating gravitational waves could be of order several solar masses, and thus a merger of these stars constitutes an interesting wave source.
Resumo:
Dissertação de mest. em Física - área de especialização em Física para Ensino, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2003
Resumo:
Dissertação (mestrado)—Universidade de Brasília,Instituto de Ciências Humanas, Programa de Pós-Graduação em Filosofia, 2014.
Resumo:
This thesis focuses on finding the optimum block cutting dimensions in terms of the environmental and economic factors by using a 3D algorithm for a limestone quarry in Foggia, Italy. The environmental concerns of quarrying operations are mainly: energy consumption, material waste, and pollution. The main economic concerns are the block recovery, the selling prices, and the production costs. Fractures adversely affect the block recovery ratio. With a fracture model, block production can be optimized. In this research, the waste volume produced by quarrying was minimised to increase the recovery ratio and ensure economic benefits. SlabCutOpt is a software developed at DICAM–University of Bologna for block cutting optimization which tests different cutting angles on the x-y-z planes to offer up alternative cutting methods. The program tests several block sizes and outputs the optimal result for each entry. By using SlabCutOpt, ten different block dimensions were analysed, the results indicated the maximum number of non-intersecting blocks for each dimension. After analysing the outputs, the block named number 1 with the dimensions ‘1mx1mx1m’ had the highest recovery ratio as 43% and the total Relative Money Value (RMV) with a value of 22829. Dimension number 1, also had the lowest waste volume, with a value of 3953.25 m3, for the total bench. For cutting the total bench volume of 6932.25m3, the diamond wire cutter had the lowest dust emission values for the block with the dimension ‘2mx2mx2m’, with a value of 24m3. When compared with the Eco-Label standards, block dimensions having surface area values lower than 15m2, were found to fit the natural resource waste criteria of the label, as the threshold required 25% of minimum recovery [1]. Due to the relativity of production costs, together with the Eco-Label threshold, the research recommends the selection of the blocks with a surface area value between 6m2 and 14m2.
Resumo:
This PhD thesis focuses on studying the classical scattering of massive/massless particles toward black holes, and investigating double copy relations between classical observables in gauge theories and gravity. This is done in the Post-Minkowskian approximation i.e. a perturbative expansion of observables controlled by the gravitational coupling constant κ = 32πGN, with GN being the Newtonian coupling constant. The investigation is performed by using the Worldline Quantum Field Theory (WQFT), displaying a worldline path integral describing the scattering objects and a QFT path integral in the Born approximation, describing the intermediate bosons exchanged in the scattering event by the massive/massless particles. We introduce the WQFT, by deriving a relation between the Kosower- Maybee-O’Connell (KMOC) limit of amplitudes and worldline path integrals, then, we use that to study the classical Compton amplitude and higher point amplitudes. We also present a nice application of our formulation to the case of Hard Thermal Loops (HTL), by explicitly evaluating hard thermal currents in gauge theory and gravity. Next we move to the investigation of the classical double copy (CDC), which is a powerful tool to generate integrands for classical observables related to the binary inspiralling problem in General Relativity. In order to use a Bern-Carrasco-Johansson (BCJ) like prescription, straight at the classical level, one has to identify a double copy (DC) kernel, encoding the locality structure of the classical amplitude. Such kernel is evaluated by using a theory where scalar particles interacts through bi-adjoint scalars. We show here how to push forward the classical double copy so to account for spinning particles, in the framework of the WQFT. Here the quantization procedure on the worldline allows us to fully reconstruct the quantum theory on the gravitational side. Next we investigate how to describe the scattering of massless particles off black holes in the WQFT.
Resumo:
We present a new quantum description for the Oppenheimer-Snyder model of gravitational collapse of a ball of dust. Starting from the geodesic equation for dust in spherical symmetry, we introduce a time-independent Schrödinger equation for the radius of the ball. The resulting spectrum is similar to that of the Hydrogen atom and Newtonian gravity. However, the non-linearity of General Relativity implies that the ground state is characterised by a principal quantum number proportional to the square of the ADM mass of the dust. For a ball with ADM mass much larger than the Planck scale, the collapse is therefore expected to end in a macroscopically large core and the singularity predicted by General Relativity is avoided. Mathematical properties of the spectrum are investigated and the ground state is found to have support essentially inside the gravitational radius, which makes it a quantum model for the matter core of Black Holes. In fact, the scaling of the ADM mass with the principal quantum number agrees with the Bekenstein area law and the corpuscular model of Black Holes. Finally, the uncertainty on the size of the ground state is interpreted within the framework of an Uncertainty Principle.
Resumo:
Il modello ΛCDM è il modello cosmologico più semplice, ma finora più efficace, per descrivere l'evoluzione dell'universo. Esso si basa sulla teoria della Relatività Generale di Einstein e fornisce una spiegazione dell'espansione accelerata dell'universo introducendo la costante cosmologica Λ, che rappresenta il contributo della cosiddetta energia oscura, un'entità di cui ben poco si sa con certezza. Sono stati tuttavia proposti modelli teorici alternativi che descrivono gli effetti di questa quantità misteriosa, introducendo ad esempio gradi di libertà aggiuntivi, come nella teoria di Horndeski. L'obiettivo principale di questa testi è quello di studiare questi modelli tramite il tensor computer algebra xAct. In particolare, il nostro scopo sarà quello di implementare una procedura universale che permette di derivare, a partire dall'azione, le equazioni del moto e l'evoluzione temporale di qualunque modello generico.