973 resultados para Reenkola, Elina M.: The veiled female core
Resumo:
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.
Resumo:
Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle subunit from the chaperone-subunit pre-assembly complex and incorporation into the final fibre structure. However, in view of the large interface between chaperone and subunit in the pre-assembly complex and the reported stability of this complex, it is difficult to understand how final folding could release sufficient energy to drive assembly. In the present paper, we show the X-ray structure for a native chaperone-fibre complex that, together with thermodynamic data, shows that the final folding step is indeed an essential component of the assembly process. We show that completion of the hydrophobic core and incorporation into the fibre results in an exceptionally stable module, whereas the chaperone-subunit preassembly complex is greatly destabilized by the high-energy conformation of the bound subunit. This difference in stabilities creates a free energy potential that drives fibre formation.
Resumo:
Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.
Resumo:
Pine beauty moth (Panolis flammea D&S, Lepidoptera: Noctuidae) were reared individually from egg hatch to pupation on one of three host plants, Pinus sylvestris (native host plant), Pinus contorta (Central Interior seed origin - good quality introduced host) and P. contorta (Alaskan seed origin - poor quality introduced host). After emerging from the pupae the adult moths were confined to a Skeena River seed origin of P. contorta. Female pupal weight and adult life span were significantly higher on P. sylvestris than on the two lodgepole pine seed origins. Development time was, however, not significantly different between treatments, but larval mean relative growth rate was found to be negatively correlated with birth weight and positively correlated with pupal weight. The time to emerge from the pupa was also not significantly different between treatments. However, there were marked differences between the genders. Male moths lost a significantly greater proportion of their weight over the pupal stage but lived significantly longer as adults than the females. Female moths emerged from the pupal stage significantly sooner than male moths. There was no apparent advantage of lai-ge birth size when looked at in terms of subsequent performance. These results are discussed in light of current life history theory.
Resumo:
The intention of this paper is to explore traditions and current trends in art with particular reference to the depiction of female experiences such as pregnancy, abortion, birth and motherhood. The inclusion and exclusion of such images in art history over time and across societies reflects prevailing attitudes, whilst affirming various stereotypical and gendered constructions developed and sustained within those societies. These constructions in turn relate to criteria defined by class, access to education and notions of femininity. Work by artists which feature aspects of these experiences (particularly childbirth), is considered taboo by many in a Western society which continues to render the essentially female experience as private, invisible and stigmitised and confuses the natural with the sexual. The work of undergraduate art students, inspired by the artwork of women artists who make explicit or are influenced by essentially female experiences, is discussed and attempts made to connect their work to the issues outlined.
Resumo:
Objective: The objective of this study was to explore the relationship between low density lipoprotein (LDL) and dendritic cell (DC) activation, based upon the hypothesis that reactive oxygen species (ROS)-mediated modification of proteins that may be present in local DC microenvironments could be important as mediators of this activation. Although LDL are known to be oxidised in vivo, and taken up by macrophages during atherogenesis; their effect on DC has not been explored previously. Methods: Human DCs were prepared from peripheral blood monocytes using GM-CSF and IL-4. Plasma LDLs were isolated by sequential gradient centrifugation, oxidised in CuSO4, and oxidation arrested to yield mild, moderate and highly oxidised LDL forms. DCs exposed to these LDLs were investigated using combined phenotypic, functional (autologous T cell activation), morphological and viability assays. Results: Highly-oxidised LDL increased DC HLA-DR, CD40 and CD86 expression, corroborated by increased DC-induced T cell proliferation. Both native and oxidised LDL induced prominent DC clustering. However, high concentrations of highly-oxidised LDL inhibited DC function, due to increased DC apoptosis. Conclusions: This study supports the hypothesis that oxidised LDL are capable of triggering the transition from sentinel to messenger DC. Furthermore, the DC clustering–activation–apoptosis sequence in the presence of different LDL forms is consistent with a regulatory DC role in immunopathogenesis of atheroma. A sequence of initial accumulation of DC, increasing LDL oxidation, and DC-induced T cell activation, may explain why local breach of tolerance can occur. Above a threshold level, however, supervening DC apoptosis limits this, contributing instead to the central plaque core.
Resumo:
CONTEXT. Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. AIMS. To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. METHODS. When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. KEY RESULTS. Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. CONCLUSIONS. In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. IMPLICATIONS. In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the 20 management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.
Resumo:
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.
Resumo:
The complex cyclical nature of Pleistocene climate, driven by the evolving orbital configuration of the Earth, is well known but not well understood. A major climatic transition took place at the Mid-Brunhes Event (MBE), ca. 430 ka ago after which the amplitude of the ca.100 ka climate oscillations increased, with substantially warmer interglacials, including periods warmer than present. Recent modelling has indicated that while the timing of these warmer-than-present transient (WPT) events is consistent with southern warming due to a deglaciation-forced slowdown of the Atlantic Meridional Overturning Circulation, the magnitude of warming requires a local amplification, for which a candidate is the feedback of significant West Antarctic Ice Sheet (WAIS) retreat. We here extend this argument, based on the absence of WPTs in the early ice core record (450–800 ka ago), to hypothesize that the MBE could be a manifestation of decreased WAIS stability, triggered by ongoing subglacial erosion.
Resumo:
The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to 2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by 1 K); however, maximum temperatures increased by 2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.
Resumo:
This chapter aims to discuss the relationship between femininity and representations of women involved in violence, focussing on visual representations. Miranda Alison has made the point that the repeated necessity to qualify the term 'combatant' with the descriptor 'female' draws attention to how women soldiers, female freedom fighters, female suicide bombers and female terrorists are exceptional figures. That the female combatant or the female terrorist is an aberration or a deviation from a masculine norm is undermined by the lengthy history of women as warriors, fighters, and terrorists. In that sense it is not so much that fighting women are rare but that there is amnesia within cultural memories concerning the woman fighter. However, in representations of conflict, the dominant image associated with femininity is passive; that is as the defenceless and the defended, or as the allegory of peace. Moreover, representations of men in wars as defeated or wounded means feminising such figures. Miriam Cooke, in her Women and the War Story, 1996, points out how a mythic war story provides men with political roles, in the politikon or public arena, whereas women are domesticated in the space of the oikon. In the mythic war story women may function as Mater Dolorosa, Patriotic Mother or Spartan Mother. It follows then that there are conditions in which it is permissible to represent women fighting on behalf of their children or in defence of the home, and in the absence of men. These images are also found in wider culture: Sarah Connor in Terminator or Ripley in Alien, for example. Images of the female terrorist raise new issues but I want to argue that it is also the case that discussing femininity and the terrorist must involve relating such imagery to representations of the female warrior over a longer timespan. Some questions have shifted since the late twentieth century. Dating from the early 1990s, most Western nations increasingly incorporated women into combat roles within their armed forces. This paper will aim to unpick some of the intricate connections between the increasing presence of women in the armed forces, what relationship this has to emancipation and the participation of women in violence classed as terrorist.
Resumo:
This article reports an experiment in world city network analysis focusing on city-dyads. Results are derived from an unusual principal components analysis of 27,966 city-dyads across 5 advanced producer service sectors. A 2-component solution is found that identifies different forms of globalization: extensive and intensive. The latter is characterized by very high component scores and describes the more important city-dyads focused upon London-New York (NYLON). The extensive globalization component heavily features London and New York but with each linked to less important cities. U.S. cities score relatively high on the intensive globalization component and we use this finding to explain the low connectivities of U.S. cities in previous studies of the world city network. The two components are tentatively interpreted in world-systems terms: intensive globalization is the process of core-making through city-dyads; extensive globalization is the process of linking core with non-core through city-dyads.
Resumo:
We present a detailed investigation of a magnetospheric flux transfer event (FTE) seen by the Active Magnetospheric Tracer Explorer (AMPTE) UKS and IRM satellites around 1046 UT on October 28, 1984. This event has been discussed many times previously in the literature and has been cited as support for a variety of theories of FTE formation. We make use of a model developed to reproduce ion precipitations seen in the cusp ionosphere. The analysis confirms that the FTE is well explained as a brief excursion into an open low-latitude boundary layer (LLBL), as predicted by two theories of magnetospheric FTEs: namely, that they are bulges in the open LLBL due to reconnection rate enhancements or that they are indentations of the magnetopause by magnetosheath pressure increases (but in the presence of ongoing steady reconnection). The indentation of the inner edge of the open LLBL that these two models seek to explain is found to be shallow for this event. The ion model reproduces the continuous evolution of the ion distribution function between the sheath-like population at the event center and the surrounding magnetospheric populations; it also provides an explanation of the high-pressure core of the event as comprising field lines that were reconnected considerably earlier than those that are draped over it to give the event boundary layer. The magnetopause transition parameter is used to isolate a field rotation on the boundaries of the core, which is subjected to the tangential stress balance test. The test identifies this to be a convecting structure, which is neither a rotational discontinuity (RD) nor a contact discontinuity, but could possibly be a slow shock. In addition, evidence for ion reflection off a weak RD on the magnetospheric side of this structure is found. The event structure is consistent in many ways with features predicted for the open LLBL by analytic MHD theories and by MHD and hybrid simulations. The de Hoffman-Teller velocity of the structure is significantly different from that of the magnetosheath flow, indicating that it is not an indentation caused by a high-pressure pulse in the sheath but is consistent with the motion of newly opened field lines (different from the sheath flow because of the magnetic tension force) deduced from the best fit to the ion data. However, we cannot here rule out the possibility that the sheath flow pattern has changed in the long interval between the two satellites observing the FTE and subsequently emerging into the magnetosheath; thus this test is not conclusive in this particular case. Analysis of the fitted elapsed time since reconnection shows that the core of the event was reconnected in one pulse and the event boundary layer was reconnected in a subsequent pulse. Between these two pulses is a period of very low (but nonzero) reconnection rate, which lasts about 14 mins. Thus the analysis supports, but does not definitively verify, the concept that the FTE is a partial passage into an open LLBL caused by a traveling bulge in that layer produced by a pulse in reconnection rate.
Resumo:
Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.
Resumo:
This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Department for Education (DfE).