926 resultados para Recycling textiles
Oxidative Leaching of metals from electronic waste with solutions based on quaternary ammonium salts
Resumo:
The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quaternary ammonium salt (quat) such as choline chloride or chlormequat. These solutions are reminiscent of deep eutectic solvents (DES) based on quats. DES are quite similar to ionic liquids (ILs) and are used as well as alternative solvents with a great diversity of physical properties, making them attractive for replacement of hazardous, volatile solvents (e.g. VOCs). A remarkable difference between genuine DES and ILs with the solutions used in this project is the addition of rather large quantities of water. It is shown the presence of water has a lot of advantages on the leaching of metals, while the properties typical for DES still remain. The oxidizing capacities of Cu(II) stem from the existence of a stable Cu(I) component in quat based DES and thus the leaching stems from the activity of the Cu(II)/Cu(I) redox couple. The advantage of Fe(III) in combination with DES is the fact that the Fe(III)/Fe(II) redox couple becomes reversible, which is not true in pure water. This opens perspectives for regeneration of the etching solution. In this project the leaching of copper was studied as a function of gradual increasing water content from 0 - 100w% with the same concentration of copper chloride or iron(III) chloride at room temperature and 80ºC. The solutions were also tested on real PCBs. At room temperature a maximum leaching effect for copper was obtained with 30w% choline chloride with 0.2 M CuCl2.2H2O. The leaching effect is still stronger at 80°C, b ut of course these solutions are more energy consuming. For aluminium, tin, zinc and lead, the leaching was faster at 80ºC. Iron and nickel dissolved easily at room temperature. The solutions were not able to dissolve gold, silver, rhodium and platinum.
Resumo:
Foram utilizados como elemento principal de estudo, os efluentes líquidos dos processos industriais da ENDUTEX, Tinturaria e Acabamento de Malhas, S. A. localizada no município de Caldas de Vizela, distrito de Braga. O estudo foi realizado na empresa devido ao interesse da mesma em poder reaproveitar o calor libertado nos efluentes para aquecimento de parte da água captada no rio de Vizela. O objectivo do trabalho consiste no dimensionamento de um permutador de calor que permita satisfazer o interesse da empresa, assim como, um estudo económico relativo aos custos envolventes. Com o intuito de concretizar os objectivos propostos foram realizadas visitas semanais à empresa para se proceder ao levantamento de dados e para a realização de amostragens do efluente para posterior caracterização. Depois de efectuado o dimensionamento do permutador de placas para diferentes caudais e temperaturas dos fluidos, frio (água do rio) e quente (efluentes), concluiu-se que as condições mais rentáveis correspondiam a um caudal de fluido frio de 17 m3/h em que a temperatura de entrada e de saída no permutador seria de 14 ºC e 48 ºC, respectivamente. O caudal de fluido quente seria de 20 m3/h, sendo a temperatura de entrada e de saída no permutador de 62 ºC e 33,1 ºC, respectivamente. Como resultado do dimensionamento obteve-se um permutador de placas com 167 placas em que o coeficiente global de transferência de calor (U) é de 726,9 W/m2ºC, a área projectada de 55,7 m2 e a queda de pressão de 0,904 KPa. Foi consultada a empresa ARSOPI-THERMAL para verificação das características dos permutadores existentes no mercado. No entanto, para as mesmas condições foi sugerido um permutador com 31 placas em que o coeficiente global de transferência de calor (U) é de 6267 W/m2ºC, a área projectada de 7,39 m2 e a queda de pressão de 76 KPa. A diferença verificada nos resultados apresentados pode ter origem na utilização de diferentes expressões no cálculo do coeficiente pelicular de transferência de calor (h) e pelo facto da ARSOPI desprezar o factor de sujamento no seu dimensionamento Na análise económica do projecto é de referir que para o arranque do projecto foi feito o levantamento das necessidades de investimento, situando-se este num valor total de 9640€, sendo o investimento financiado apenas por capitais próprios. O prazo de recuperação do investimento (Pay Back Period) é de cerca de 2 meses.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Exposição ocupacional a mercúrio: associação com a atividade da paraoxonase humana e vitaminas A e E
Resumo:
Mestrado em Segurança e Higiene no Trabalho
Resumo:
Education towards sustainability in Chemical Engineering (CEng) gave birth to awaste management program (WMP) at Instituto Superior de Engenharia do Porto, in Portugal. It involves students, teachers, and laboratory technicians. It aims to enhance the conscientiousness of the decision-maker next generation for saving resources, managing wastes, and at same time to develop applied chemistry understanding. This program was implemented in 1999 and is responsible for management and fate of all inorganic wastewater providing from training experimental activities of the CEng degree. An immediate reduction of wastes at their source was first defined. Wastes were collected separately and were reused, recycled or chemically treated, and after analytically controlled as legally imposed. Solids formed after this program were recycled, purified or followed suitable elimination. Global results point out environmental, pedagogical, and social benefits. Active participants are aware, in agreement, and publicly committed to the WMP.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Hoje em dia muitos dos equipamentos elétricos e eletrónicos que compramos ficam obsoletos num curto espaço de tempo por causa dos rápidos avanços tecnológicos neste campo. Equipamentos como computadores, telemóveis e equipamentos elétricos e eletrónicos de pequeno e grande porte são transformados em lixo eletrónico e muitos deles são despejados no lixo comum. Para alterar este cenário, a União Europeia publicou diretivas neste domínio com o intuito de controlar o crescimento do lixo eletrónico e reduzir o seu impacto. Neste contexto, a Universidade de Yaşar (Turquia) submeteu à União Europeia um projeto (EWASTEU) com o objetivo de fornecer uma visão do que está acontecer com o equipamento transformado em lixo eletrónico e de apresentar algumas propostas para minimizar este problema. Uma das principais questões a ser respondida será a adequação das diretivas europeias.
Resumo:
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the autoaggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
Resumo:
OBJECTIVE: To estimate the prevalence of lead poisoning in children and to identify associated factors, as well as possible local sources of contamination. METHODS: A cross-sectional prevalence study conducted in 2006 with a random sample of 97 children age zero to five years from a neighborhood in Porto Alegre, Southern Brazil. Blood lead levels were measured and a questionnaire administered to collect information on sociodemographics, recycling and dwelling. A preliminary environmental evaluation was carried out with direct analysis of soil and indirect analysis of air pollution with bioindicators to identify possible sources of contamination. To analyze lead concentrations from the different collection sites, for each type of material studied, ANOVA was performed with a Brown-Forsythe adjustment for heteroscedasticity and with Dunnett's T3 procedure for multiple comparisons of unequal variances. RESULTS: Blood lead levels > 10.0 µg/dL was found in 16.5% of children. Recycling of waste at home, low father's education level, and increased age of children were associated with increase blood lead levels. High lead levels were found in soil, and there was little indication of lead air pollution. CONCLUSIONS: A high prevalence of lead poisoning was identified, and the potential sources of contamination in this community appear related to waste recylcing activities. Studies should be conducted with other populations of Brazilian children and evaluate potential sources of local and general contamination, to accurately characterize this issue in Brazil.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica