766 resultados para Recurrent neural network
Resumo:
This paper presented a novel approach to develop car following models using reactive agent techniques for mapping perceptions to actions. The results showed that the model outperformed the Gipps and Psychophysical family of car following models. The standing of this work is highlighted by its acceptance and publication in the proceedings of the International IEEE Conference on Intelligent Transportation Systems (ITS), which is now recognised as the premier international conference on ITS. The paper acceptance rate to this conference was 67 percent. The standing of this paper is also evidenced by its listing in international databases like Ei Inspec and IEEE Xplore. The paper is also listed in Google Scholar. Dr Dia co-authored this paper with his PhD student Sakda Panwai.
Resumo:
This paper presents a neural network based technique for the classification of segments of road images into cracks and normal images. The density and histogram features are extracted. The features are passed to a neural network for the classification of images into images with and without cracks. Once images are classified into cracks and non-cracks, they are passed to another neural network for the classification of a crack type after segmentation. Some experiments were conducted and promising results were obtained. The selected results and a comparative analysis are included in this paper.
Resumo:
Attractor properties of a popular discrete-time neural network model are illustrated through numerical simulations. The most complex dynamics is found to occur within particular ranges of parameters controlling the symmetry and magnitude of the weight matrix. A small network model is observed to produce fixed points, limit cycles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos. Training algorithms for tuning this dynamical behaviour are discussed. Training can be an easy or difficult task, depending whether the problem requires the use of temporal information distributed over long time intervals. Such problems require training algorithms which can handle hidden nodes. The most prominent of these algorithms, back propagation through time, solves the temporal credit assignment problem in a way which can work only if the relevant information is distributed locally in time. The Moving Targets algorithm works for the more general case, but is computationally intensive, and prone to local minima.