998 resultados para Receptors, Immunologic -- genetics -- immunology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anergic T cells display a marked decrease in their ability to produce IL-2 and to proliferate in the presence of an appropriate antigenic signal. Two nonmutually exclusive classes of models have been proposed to explain the persistence of T cell anergy in vivo. While some reports indicate that anergic T cells have intrinsic defects in signaling pathways or transcriptional activities, other studies suggest that anergy is maintained by environmental "suppressor" factors such as cytokines or Abs. To distinguish between these conflicting hypotheses, we employed the well-characterized bacterial superantigen model system to evaluate in vivo the ability of a trace population of adoptively transferred naive or anergized T cells to proliferate in a naive vs anergic environment upon subsequent challenge. Our data clearly demonstrate that bacterial superantigen-induced T cell anergy is cell autonomous and independent of environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mature T cells comprise two mutually exclusive lineages expressing heterodimeric alpha beta or gamma delta antigen receptors. During development, beta, gamma, and delta genes rearrange before alpha, and mature gamma delta cells arise in the thymus prior to alpha beta cells. The mechanism underlying commitment of immature T cells to the alpha beta or gamma delta lineage is controversial. Since the delta locus is located within the alpha locus, rearrangement of alpha genes leads to deletion of delta. We have examined the rearrangement status of the delta locus immediately prior to alpha rearrangement. We find that many thymic precursors of alpha beta cells undergo VDJ delta rearrangements. Furthermore, the same cells frequently coexpress sterile T early alpha (TEA) transcripts originating 3' of C delta and 5' of the most upstream J alpha, thus implying that individual alpha beta lineage cells undergo sequential VDJ delta and VJ alpha rearrangements. Finally, VDJ delta rearrangements in immature alpha beta cells appear to be random, supporting models in which alpha beta lineage commitment is determined independently of the rearrangement status at the TCR delta locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When endogenous mouse mammary tumor virus (MMTV) superantigens (SAg) are expressed in the first weeks of life an efficient thymic deletion of T cells expressing MMTV SAg-reactive T cell receptor (TcR) V beta segments is observed. As most inbred mouse strains and wild mice contain integrated MMTV DNA, knowing the precise extent of MMTV influence on T cell development is required in order to study T cell immunobiology in the mouse. In this report, backcross breeding between BALB.D2 (Mtv-6, -7, -8 and -9) and 38CH (Mtv-) mice was carried out to obtain animals either lacking endogenous MMTV or containing a single MMTV locus, i.e. Mtv-6, -7, -8 or -9. The TcR V beta chain (TcR V beta) usage in these mice was analyzed using monoclonal antibodies specific for TcR V beta 2, V beta 3, V beta 4, V beta 5, V beta 6, V beta 7, V beta 8, V beta 11, V beta 12 and V beta 14 segments. Both Mtv-8+ mice and Mtv-9+ mice deleted TcR V beta 5+ and V beta 11+ T cells. Moreover, we also observed the deletion of TcR V beta 12+ cells by Mtv-8 and Mtv-9 products. Mtv-6+ and Mtv-7+ animals deleted TcR V beta 3+ and V beta 5+ cells, and TcR V beta 6+, V beta 7+ and V beta 8.1+ cells, respectively. Unexpectedly, TcR V beta 8.2+ cells were also deleted in some backcross mice expressing Mtv-7. TcR V beta 8.2 reactivity to Mtv-7 was shown to be brought by the 38CH strain and to result from an amino acid substitution (Asn-->Asp) in position 19 on the TcR V beta 8.2 fragment. Reactivities of BALB.D2 TcR V beta 8.2 and 38CH TcR V beta 8.2 to the exogenous infectious viruses, MMTV(SW) and MMTV(SHN), were compared. Finally, the observation of increased frequencies of TcR V beta 2+, V beta 4+ and V beta 8+ CD4+ T cell subsets in Mtv-8+ and Mtv-9+ mice, and TcR V beta 4+ CD4+ T cells in Mtv-6+ and Mtv-7+ mice, when compared with the T cell repertoire of Mtv- mice, is consistent with the possibility that MMTV products contribute to positive selection of T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient immune attack of malignant disease requires the concerted action of both CD8+ CTL and CD4+ Th cells. We used human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic mice, in which the mouse CD8 molecule cannot efficiently interact with the alpha3 domain of A2.1, to generate a high-affinity, CD8-independent T cell receptor (TCR) specific for a commonly expressed, tumor-associated cytotoxic T lymphocyte (CTL) epitope derived from the human p53 tumor suppressor protein. Retroviral expression of this CD8-independent, p53-specific TCR into human T cells imparted the CD8+ T lymphocytes with broad tumor-specific CTL activity and turned CD4+ T cells into potent tumor-reactive, p53A2.1-specific Th cells. Both T cell subsets were cooperative and interacted synergistically with dendritic cell intermediates and tumor targets. The intentional redirection of both CD4+ Th cells and CD8+ CTL by the same high-affinity, CD8-independent, tumor-specific TCR could provide the basis for novel broad-spectrum cancer immunotherapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment. TCR sequencing also revealed that this particular clone arose at least 1 year before vaccination, displayed long-term persistence, and efficient homing to metastases. Remarkably, during concomitant vaccination over 3.5 years, the frequency of the pre-existing clone progressively increased, reaching up to 2.5% of the circulating CD8 pool while its effector functions were enhanced. In parallel, the disease stabilized, but subsequently progressed with loss of Melan-A expression by melanoma cells. Collectively, combined ex vivo analysis of T cell differentiation and clonality revealed for the first time a strong expansion of a tumor Ag-specific human T cell clone, comparable to protective virus-specific T cells. The observed successful boosting by peptide vaccination support further development of immunotherapy by including strategies to overcome immune escape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The clinical course of HIV-1 infection is highly variable among individuals, at least in part as a result of genetic polymorphisms in the host. Toll-like receptors (TLRs) have a key role in innate immunity and mutations in the genes encoding these receptors have been associated with increased or decreased susceptibility to infections. OBJECTIVES: To determine whether single-nucleotide polymorphisms (SNPs) in TLR2-4 and TLR7-9 influenced the natural course of HIV-1 infection. METHODS: Twenty-eight SNPs in TLRs were analysed in HAART-naive HIV-positive patients from the Swiss HIV Cohort Study. The SNPs were detected using Sequenom technology. Haplotypes were inferred using an expectation-maximization algorithm. The CD4 T cell decline was calculated using a least-squares regression. Patients with a rapid CD4 cell decline, less than the 15th percentile, were defined as rapid progressors. The risk of rapid progression associated with SNPs was estimated using a logistic regression model. Other candidate risk factors included age, sex and risk groups (heterosexual, homosexual and intravenous drug use). RESULTS: Two SNPs in TLR9 (1635A/G and +1174G/A) in linkage disequilibrium were associated with the rapid progressor phenotype: for 1635A/G, odds ratio (OR), 3.9 [95% confidence interval (CI),1.7-9.2] for GA versus AA and OR, 4.7 (95% CI,1.9-12.0) for GG versus AA (P = 0.0008). CONCLUSION: Rapid progression of HIV-1 infection was associated with TLR9 polymorphisms. Because of its potential implications for intervention strategies and vaccine developments, additional epidemiological and experimental studies are needed to confirm this association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mouse Mammary Tumor Virus (MMTV) long terminal repeat contains an open reading frame (orf) of 960 nucleotides encoding a 36 kDa polypeptide with a putative transmembrane domain and five N-glycosylation sites in the N-terminal part of the protein. Transgenic mice bearing either the complete or the 3' terminal half of the orf sequence of MMTV-GR under the control of the SV40 promoter were raised. As shown previously by FACS analysis transgenic mice which express the complete orf gene have a significant deletion of V beta 14 expressing T cells at 6 weeks of age. Here we show that no clonal deletion of V beta 14 bearing T cells takes place in transgenic mice that contain orf sequences from the fifth ATG to the termination codon. The pattern of tissues expressing the truncated transgene was studied by the Polymerase Chain Reaction (PCR) and was very similar to the one obtained in the V beta 14 deleting animals. These data suggest that the amino-terminal portion of the ORF protein (pORF) is required for a superantigen function, while our previous data indicated that determinants from the carboxy-terminus play an important role for TCR V beta specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study evaluates the potential of third-generation lentivirus vectors with respect to their use as in vivo-administered T cell vaccines. We demonstrate that lentivector injection into the footpad of mice transduces DCs that appear in the draining lymph node and in the spleen. In addition, a lentivector vaccine bearing a T cell antigen induced very strong systemic antigen-specific cytotoxic T lymphocyte (CTL) responses in mice. Comparative vaccination performed in two different antigen models demonstrated that in vivo administration of lentivector was superior to transfer of transduced DCs or peptide/adjuvant vaccination in terms of both amplitude and longevity of the CTL response. Our data suggest that a decisive factor for efficient T cell priming by lentivector might be the targeting of DCs in situ and their subsequent migration to secondary lymphoid organs. The combination of performance, ease of application, and absence of pre-existing immunity in humans make lentivector-based vaccines an attractive candidate for cancer immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The immunomodulatory properties of Toll-like receptors (TLR) agonists have inspired their use as experimental adjuvants for vaccination of cancer patients. However, it is now well recognized that TLR expression is not restricted to immune cells but can also be found in many cell types, including those giving rise to tumors. It is therefore mandatory to explore the potential effects of TLR triggering directly on tumor cells. EXPERIMENTAL DESIGN: In the present work, we have investigated TLR3 protein expression in melanoma cell lines derived from patients, and analyzed the effects of TLR3 agonists on tumor cell survival. Moreover, we used RNA interference to stably knock down TLR3 expression and study the involvement of this receptor in dsRNA-induced effects on melanoma cells viability. RESULTS: Human melanoma cells can express functional TLR3 protein. Interestingly, the engagement of the receptor by TLR3 agonists can directly inhibit cell proliferation and induce tumor cell death when combined to treatment with either type I IFN or protein synthesis inhibitors. These effects were shown by RNA interference to be largely dependent on TLR3. Moreover, TLR3-mediated cell death involves the activation of caspases and engages both extrinsic and intrinsic apoptotic pathways. CONCLUSION: TLR3 protein can be expressed in human melanoma cells, where it can deliver proapoptotic and antiproliferative signaling. Altogether, these results suggest that TLR3 agonists represent very promising adjuvants for cancer vaccines not only based on their well-described immunostimulatory properties, but also due to their newly identified cytostatic and cytotoxic effects directly on tumor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously demonstrated the synergistic therapeutic effect of the cetuximab (anti-epidermal growth factor receptor [EGFR] monoclonal antibody, mAb)-trastuzumab (anti-HER2 mAb) combination (2mAbs therapy) in HER2(low) human pancreatic carcinoma xenografts. Here, we compared the 2mAbs therapy, the erlotinib (EGFR tyrosine kinase inhibitor [TKI])-trastuzumab combination and lapatinib alone (dual HER2/EGFR TKI) and explored their possible mechanisms of action. The effects on tumor growth and animal survival of the three therapies were assessed in nude mice xenografted with the human pancreatic carcinoma cell lines Capan-1 and BxPC-3. After therapy, EGFR and HER2 expression and AKT phosphorylation in tumor cells were analyzed by Western blot analysis. EGFR/HER2 heterodimerization was quantified in BxPC-3 cells by time-resolved FRET. In K-ras-mutated Capan-1 xenografts, the 2mAbs therapy gave significantly higher inhibition of tumor growth than the erlotinib/trastuzumab combination, whereas in BxPC-3 (wild-type K-ras) xenografts, the erlotinib/trastuzumab combination showed similar growth inhibition but fewer tumor-free mice. Lapatinib showed no antitumor effect in both types of xenografts. The efficacy of the 2mAbs therapy was partly Fc-independent because F(ab')(2) fragments of the two mAbs significantly inhibited BxPC-3 growth, although with a time-limited therapeutic effect. The 2mAbs therapy was associated with a reduction of EGFR and HER2 expression and AKT phosphorylation. BxPC-3 cells preincubated with the two mAbs showed 50% less EGFR/HER2 heterodimers than controls. In pancreatic carcinoma xenografts, the 2mAbs therapy is more effective than treatments involving dual EGFR/HER2 TKIs. The mechanism of action may involve decreased AKT phosphorylation and/or disruption of EGFR/HER2 heterodimerization.