998 resultados para Rear-End Collisions.
Resumo:
Low-cost, narrow modulation bandwidth, un-cooled VCSELs can be utilized to directly modulate 64-QAM-encoded 11.25Gb/s signals for end-to-end real-time optical OFDM transmission over 25km SSMF IMDD systems with excellent performance robustness. © 2011 Optical Society of America.
Resumo:
Product innovativeness is a primary contingent factor to be addressed for the development of flexible management for the front-end. However, due to complexity of this early phase of the innovation process, the definition of which attributes to customise is critical to support a contingent approach. Therefore, this study investigates front-end attributes that need to be customised to permit effective management for different degrees of innovation. To accomplish this aim, a literature review and five case studies were performed. The findings highlighted the front-end strategic and operational levels as factors influencing the front-end attributes related to product innovativeness. In conclusion, this study suggests that two front-end attributes should be customised: development activities and decision-making approach. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.
Resumo:
Decision-making at the front-end of innovation is critical for the success of companies. This paper presents a simple visual method, called DMCA (Decision-Making Criteria Assessment), which was created to clarify and improve decision-making at the front-end of innovation. The method maps the uncertainty of project information and importance of decision criteria, compiling a measure that indicates whether the decision is highly uncertain, what information interferes with it, and what criteria are actually being considered. The DMCA method was tested in two projects that faced decision-making issues, and the results confirm the benefits of using this method in decision-making at the front-end. © 2012 IEEE.
Resumo:
Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.
Resumo:
We investigated the thermal evolution of end-of-range (EOR) defects in germanium and their impact on junction thermal stability. After solid-phase epitaxial regrowth of a preamorphized germanium layer, EOR defects exhibiting dislocation loop-like contrast behavior are present. These defects disappear during thermal annealing at 400 °C, while boron electrical deactivation occurs. After the whole defect population vanishes, boron reactivation is observed. These results indicate that germanium self-interstitials, released by EOR defects, are the cause of B deactivation. Unlike in Si, the whole deactivation/reactivation cycle in Ge is found to take place while the maximum active B concentration exceeds its solubility limit. © 2010 American Institute of Physics.
Resumo:
Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling.
Resumo:
A design methodology is presented for turbines in an annulus with high end wall angles. Such stages occur where large radial offsets between the stage inlet and stage outlet are required, for example in the first stage of modern low pressure turbines, and are becoming more prevalent as bypass ratios increase. The turbine vanes operate within s-shaped ducts which result in meridional curvature being of a similar magnitude to the bladeto-blade curvature. Through a systematic series of idealized computational cases, the importance of two aspects of vane design are shown. First, the region of peak end wall meridional curvature is best located within the vane row. Second, the vane should be leant so as to minimize spanwise variations in surface pressure-this condition is termed "ideal lean." This design philosophy is applied to the first stage of a low pressure turbine with high end wall angles. © 2014 by ASME.
Resumo:
This paper studies the Front End of Eco-Innovation (FEEI), the initial phase of the eco-innovation process. Incorporating environmental concerns at the front-end of innovation is important, as product parameters are still flexible. This paper investigates the FEEI for 42 small and medium sized eco-innovators in the Netherlands by using a survey. The results show that SMEs embrace informal, systematic, and open innovation approaches at the FEEI. Teams appear to be multidisciplinary, and creativity and environmental knowledge are essential. Experimentation played a significant role at the FEEI. The paper concludes with recommendations for future research and implications for managers. © 2013 Elsevier B.V.
Resumo:
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is currently limited to the middle and lower reaches of the Yangtze River from Yichang to Shanghai, China, and the adjoining Poyang and Dongting Lakes. Its population size has decreased remarkably during the last several decades due to the heavy impact of human activities, including overfishing of prey species, water development projects that cause attendant habitat loss and degradation, water pollution, and accidental deaths caused by harmful fishing gear and collisions with motorized vessels. It was estimated that the number of remaining individuals was down to approximately 1800 in 2006, a number that is decreasing at a rate as high as 5% per year. Three conservation measures - in situ and ex situ conservation and captive breeding have been applied to the protection of this unique porpoise since the early 1990s. Seven natural and two "semi-natural" reserves have so far been established. Since 1996, a small group of finless porpoises has been successfully reared in a facility at the Institute of Hydrobiology of the Chinese Academy of Sciences; three babies were born in captivity on July 5, 2005, June 2, 2007 and July 5, 2008. These are the first freshwater cetaceans ever born in captivity in the world. Several groups of these porpoises caught in the main stream of the Yangtze River, or rescued, have been introduced into the Tian'e-Zhou Semi-natural Reserve since 1990. These efforts have proven that, not only can these animals survive in the area, they are also to reproduce naturally and successfully. More than 30 calves had been born in the reserve since then, with one to three born each year. Taking deaths and transfers into account, there were approximately 30 individuals living in the reserve as of the end of 2007. Among eight mature females captured in April 2008, five were confirmed pregnant. This effort represents the first successful attempt at off-site protection of a cetacean species in the world, and establishes a solid base for conservation of the Yangtze finless porpoise. A lesson must be drawn from the tragedy of Chinese River Dolphin (Lipotes vexillifer), which has already been declared likely extinct. Strong, effective and appropriate protective measures must be carried out quickly to prevent the Yangtze finless porpoise from becoming a second Chinese River Dolphin, and save the biodiversity of the Yangtze River as a whole.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.