929 resultados para Rare earth metals.
Resumo:
By exciting at 940 nm, we have characterized the 1.84 m near infrared emission of trivalent thulium ions in Yb3+, Tm3+:KGd WO4 2 single crystals as a function of the dopant concentration and temperature, from 10 K to room temperature. An overall 3H6 Stark splitting of 470 cm−1 for the Tm3+ ions in the Yb3+, Tm3+:KGd WO4 2 was obtained. We also studied the blue emission at 476 nm Tm3+ and the near infrared emissions at 1.48 m Tm3+ and 1 m Yb3+ as a function of the dopant concentration. Experimental decay times of the 1G4, 3H4, and 3F4 Tm3+ and 2F5/2 Yb3+ excited states have been measured as a function of Yb3+ and Tm3+ ion concentrations. For the 3F4 →3H6 transition of Tm3+ ions, we used the reciprocity method to calculate the maximum emission cross section of 3.07 10−20 cm2 at 1.84 m for the polarization parallel to the Nm principal optical direction.
Resumo:
A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.
Resumo:
Taloudellisesti tärkeiden metallien varannot ja tuotanto eivät ole jakautuneet tasaisesti. Maantieteelliset alueet, joilla ei ole omia varantoja ovat riippuvaisia muualta tuoduista raaka-aineista. Euroopan komissio ja USA:n energiaministeriö ovat luokitelleet tietyt metallit kriittisiksi niiden taloudellisen merkittävyyden ja saatavuuteen liittyvien epävarmuustekijöiden johdosta. Tällaisten metallien saatavuutta voitaisiin mahdollisesti parantaa lisäämällä niiden talteenottoa jätteistä. Tutkimuksessa kartoitettiin Euroopan komission kriittiseksi luokittelemien metallien pitoisuuksia eräissä jätevirroissa. Kartoitetut jätteet olivat teollisissa poltto-prosesseissa syntyneitä polttojätteitä, prosessiteollisuuden jätesakkoja ja sähkö- ja elektroniikkajätteitä. Kartoituksen perusteella valittiin lupaavimmat jätteet ja suoritettiin niille talteenottokokeita. Talteenottokokeita suoritettiin kolmelle jätteelle. Yhdestä jätesakasta liuotettiin indiumia rikki- ja suolahapoilla. Kahden eri polttojätteen seoksesta liuotettiin galliumia rikkihapolla. Käytettyjen loisteputkien käsittelyprosessista peräisin olleesta sakasta liuotettiin maametalleja rikki- ja suolahapoilla sekä rikki- ja typpihapon seoksella. Indium liukeni heikosti (korkeintaan 25 %) huoneenlämmössä rikkihapolla. Suolahapolla se liukeni paremmin (68 %). Polttojätteen liuotuskokeissa galliumin talteenottoasteen todettiin riippuvan käytetyn liuottimen määrästä. Loisteputkijätesakasta liukeni yttriumia ja europiumia kaikilla käytetyillä happoliuoksilla noin 70–100 %. Käytetyillä happokonsentraatioilla ei havaittu suuria eroja yttriumin ja europiumin liukoisuuksissa. Näitä metalleja voitaisiin mahdollisesti ottaa talteen tämän tyyppisestä sakasta liuottamalla ne happoliuoksella ja saostamalla oksalaattina. Tarvittaessa liuokset voitaisiin puhdistaa tai metallit erottaa toisistaan neste–nesteuutolla, joka on tärkein maametallien tuotantoon käytetty hydrometallurginen menetelmä.
Resumo:
The investigation of physical properties of matter has progressed so much during the last hundred years. Today physics is divided in to a large distinct group of special branches. These branches are distinguished by the particular area studied, method of investigation and so on. An independent and important branch that has developed is the physics ofthin films.Any object in solid or liquid form with one of its dimensions very much smaller than that of the other two may be called a thin film. It is having only one common property, namely, one of their dimensions is very small, though all their physical properties may be different. Thin layers of oil, floating on the surface of water, with their fascinating colours, have attracted men’s curiosity from time immemorial. The earliest application of thin films was the protective coatings in the form of paints. A thin layer of tin has been used from ancient times to protect copper utensils from corrosion. Indium thin films are used in certain applications on account of their good lubricating property. Relay contacts are coated with thin films of rare earth metals in order to prevent burning due to arcing. Hard coatings are also available using diamond like carbon (i-carbon). The basic properties of thin films are of considerable interest because of their potential applications in various fields of science and technology
Resumo:
The objective of the present work is to improve the textural and structural properties of zeolite-Y through ion exchange with rare earth metals. We meant to obtain a comparative evaluation of the physicochemical properties and catalytic activity of rare earth modified H-Y, Na-Y, K-Y, and Mg-Y zeolites. Friedel-Crafts alkylations of benzene with higher 1- olefins such as 1-octene, 1-decene, and 1dodecene for the synthesis of linear alkylbenzene (LAB) have been selected for the present study. An attempt has also been directed towards the correlation of the enhancement in 2-phenylalkane formation to the improvement in the textural and structural properties upon rare earth modification for the zeolite-Y. The present method for LAB synthesis stands as an effective Green alternative for the existing hydrofluoric acid technology
Resumo:
The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O estudo da adição de dopantes trivalentes é uma das principais pesquisas na área de varistores. Vários autores têm buscado entender os efeitos destes dopantes nas propriedades elétricas e microestruturais destas cerâmicas eletrônicas. Tanto metais de transição quanto terras raras são adicionados em cerâmicas à base de SnO2 a fim de verificar o seu comportamento. O que se tem observado é que alguns destes óxidos tais como Cr2O3 e La2O3 melhoram significativamente as propriedades elétricas dos varistores, enquanto que outros como o Bi2O3 e Er2O3, por exemplo, não produzem tal efeito. A evolução do desempenho do comportamento varistor tem sido também atribuída às espécies de oxigênio produzidas pela reação com estes dopantes. Esta revisão apresenta resultados de estudos recentes do comportamento varistor frente a adição de metais doadores.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)