758 resultados para ROV


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vol. 3 published in Lyck, 1862.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete Data set of ROV postition data, onboard CTD data, underwater photos and underwater videos that were produced with ROV MARUM-Quest during Meteor Expedition M114/2. Data set organized as a single folder for each dive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transects of a Remotely Operated Vehicle (ROV) providing sea-bed videos and photographs were carried out during POLARSTERN expedition ANT-XVII/3 focussing on the ecology of benthic assemblages on the Antarctic shelf in the South-Eastern Weddell Sea. The ROV-system sprint 103 was equiped with two video- and one still camera, lights, flash-lights, compass, and parallel lasers providing a scale in the images, a tether-management system (TMS), a winch, and the board units. All cameras used the same main lense and could be tilted. Videos were recorded in Betacam-format and (film-)slides were made by decision of the scientific pilot. The latter were mainly made under the aspect to improve the identification of organisms depicted in the videos because the still photographs have a much higher optical resolution than the videos. In the photographs species larger than 3 mm, in the videos larger than 1 cm are recognisable and countable. Under optimum conditions the transects were strait; the speed and direction of the ROV were determined by the drift of the ship in the coastal current, since both, the ship and the ROV were used as a drifting system; the option to operate the vehicle actively was only used to avoide obstacles and to reach at best a distance of only approximately 30 cm to the sea-floor. As a consequence the width of the photographs in the foreground is approximately 50 cm. Deviations from this strategy resulted mainly from difficult ice- and weather conditions but also from high current velocity and local up-welling close to the sea-bed. The sea-bed images provide insights into the general composition of key species, higher systematic groups and ecological guilds. Within interdisciplinary approaches distributions of assemblages can be attributed to environmental conditions such as bathymetry, sediment characteristics, water masses and current regimes. The images also contain valuable information on how benthic species are associated to each other. Along the transects, small- to intermediate-scaled disturbances, e.g. by grounding icebergs were analysed and further impact to the entire benthic system by local succession of recolonisation was studied. This information can be used for models predicting the impact of climate change to benthic life in the Southern Ocean. All these approaches contribute to a better understanding of the fiunctioning of the benthic system and related components of the entire Antarctic marine ecosystem. Despite their scientific value the imaging methods meet concerns about the protection of sensitive Antarctic benthic systems since they are non-invasive and they also provide valuable material for education and outreach purposes.