943 resultados para RNA secondary structure
Resumo:
Proteins, the most essential biological macromolecules, are involved in nearly every aspect of life. The elucidation of their three-dimensional structures through X-ray analysis has significantly contributed to our understanding of fundamental mechanisms in life processes. However, the obstacle of obtaining high-resolution protein crystals remains significant. Thus, searching for materials that can effectively induce nucleation of crystals is a promising and active field. This thesis work characterizes and prepares albumin nanoparticles as heterogeneous nucleants for protein crystallization. These stable Bovine Serum Albumin nanoparticles were synthesized via the desolvation method, purified efficiently, and characterized in terms of dimension, morphology, and secondary structure. The ability of BSA-NPs to induce macromolecule nucleation was tested on three model proteins, exhibiting significant results, with larger NPs inducing more nucleation. The second part of this work focuses on the structural study, mainly through X-ray crystallography, of five chloroplast and cytosolic enzymes involved in the fundamental cellular processes of two photosynthetic organisms, Chlamydomonas reinhardtii and Arabidopsis thaliana. The structures of three enzymes involved in the Calvin-Benson-Bassham Cycle, phosphoribulokinase, troseposphatisomerase, and ribulosiophosphate epimerase from Chlamydomonas reinhardtii, were solved to investigate their catalytic and regulatory mechanisms. Additionally, the structure of nitrosylated-CrTPI made it possible to identify Cys14 as a target for nitrosylation, and the crystallographic structure of CrRPE was solved for the first time, providing insights into its catalytic and regulatory properties. Finally, the structure of S-nitrosoglutathione reductase, AtGSNOR, was compared with that of AtADH1, revealing differences in their catalytic sites. Overall, seven crystallographic structures, including partially oxidized CrPRK, CrPRK/ATP, CrPRK/ADP/Ru5P, CrTPI-nitrosylated, apo-CrRPE, apo-AtGSNOR, and AtADH1-NADH, were solved and are yet to be deposited in the PDB.
Resumo:
Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
ABSTRACT The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.
Resumo:
The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.
Resumo:
To establish the relationships of the lizard- and mammal-infecting Leishmania, we characterized the intergenic spacer region of ribosomal RNA genes from L. tarentolae and L. hoogstraali. The organization of these regions is similar to those of other eukaryotes. The intergenic spacer region was approximately 4 kb in L. tarentolae and 5.5 kb in L. hoogstraali. The size difference was due to a greater number of 63-bp repetitive elements in the latter species. This region also contained another element, repeated twice, that had an inverted octanucleotide with the potential to form a stem-loop structure that could be involved in transcription termination or processing events. The ribosomal RNA gene localization showed a distinct pattern with one chromosomal band (2.2 Mb) for L. tarentolae and two (1.5 and 1.3 Mb) for L. hoogstraali. The study also showed sequence differences in the external transcribed region that could be used to distinguish lizard Leishmania from the mammalian Leishmania. The intergenic spacer region structure features found among Leishmania species indicated that lizard and mammalian Leishmania are closely related and support the inclusion of lizard-infecting species into the subgenus Sauroleishmania proposed by Saf'janova in 1982.
Resumo:
The opportunistic ubiquitous pathogen Pseudomonas aeruginosa strain PAOl is a versatile Gram-negative bacterium that has the extraordinary capacity to colonize a wide diversity of ecological niches and to cause severe and persistent infections in humans. To ensure an optimal coordination of the genes involved in nutrient utilization, this bacterium uses the NtrB/C and/or the CbrA/B two-component systems, to sense nutrients availability and to regulate in consequence the expression of genes involved in their uptake and catabolism. NtrB/C is specialized in nitrogen utilization, while the CbrA/B system is involved in both carbon and nitrogen utilization and both systems activate their target genes expression in concert with the alternative sigma factor RpoN. Moreover, the NtrB/C and CbrA/B two- component systems regulate the secondary metabolism of the bacterium, such as the production of virulence factors. In addition to the fine-tuning transcriptional regulation, P. aeruginosa can rapidly modulate its metabolism using small non-coding regulatory RNAs (sRNAs), which regulate gene expression at the post-transcriptional level by diverse and sophisticated mechanisms and contribute to the fast physiological adaptability of this bacterium. In our search for novel RpoN-dependent sRNAs modulating the nutritional adaptation of P. aeruginosa PAOl, we discovered NrsZ (Nitrogen regulated sRNA), a novel RpoN-dependent sRNA that is induced under nitrogen starvation by the NtrB/C two-component system. NrsZ has a unique architecture, formed of three similar stem-loop structures (SL I, II and II) separated by variant spacer sequences. Moreover, this sRNA is processed in short individual stem-loop molecules, by internal cleavage involving the endoribonuclease RNAse E. Concerning NrsZ functions in P. aeruginosa PAOl, this sRNA was shown to trigger the swarming motility and the rhamnolipid biosurfactants production. This regulation is due to the NrsZ-mediated activation of rhlA expression, a gene encoding for an enzyme essential for swarming motility and rhamnolipids production. Interestingly, the SL I structure of NrsZ ensures its regulatory function on rhlA expression, suggesting that the similar SLs are the functional units of this modular sRNA. However, the regulatory mechanism of action of NrsZ on rhlA expression activation remains unclear and is currently being investigated. Additionally, the NrsZ regulatory network was investigated by a transcriptome analysis, suggesting that numerous genes involved in both primary and secondary metabolism are regulated by this sRNA. To emphasize the importance of NrsZ, we investigated its conservation in other Pseudomonas species and demonstrated that NrsZ is conserved and expressed under nitrogen limitation in Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48 and Pseudomonas syringae pv. tomato DC3000, strains having different ecological features, suggesting an important role of NrsZ in the adaptation of Pseudomonads to nitrogen starvation. Interestingly the architecture of the different NrsZ homologs is similarly composed by SL structures and variant spacer sequences. However, the number of SL repetitions is not identical, and one to six SLs were predicted on the different NrsZ homologs. Moreover, NrsZ is processed in short molecules in all the strains, similarly to what was previously observed in P. aeruginosa PAOl, and the heterologous expression of the NrsZ homologs restored rhlA expression, swarming motility and rhamnolipids production in the P. aeruginosa NrsZ mutant. In many aspects, NrsZ is an atypical sRNA in the bacterial panorama. To our knowledge, NrsZ is the first described sRNA induced by the NtrB/C. Moreover, its unique modular architecture and its processing in similar short SL molecules suggest that NrsZ belongs to a novel family of bacterial sRNAs. -- L'agent pathogène opportuniste et ubiquitaire Pseudomonas aeruginosa souche PAOl est une bactérie Gram négative versatile ayant l'extraordinaire capacité de coloniser différentes niches écologiques et de causer des infections sévères et persistantes chez l'être humain. Afin d'assurer une coordination optimale des gènes impliqués dans l'utilisation de différents nutriments, cette bactérie se sert de systèmes à deux composants tel que NtrB/C et CbrA/B afin de détecter la disponibilité des ressources nutritives, puis de réguler en conséquence l'expression des gènes impliqués dans leur importation et leur catabolisme. Le système NtrB/C régule l'utilisation des sources d'azote alors que le système CbrA/B est impliqué à la fois dans l'utilisation des sources de carbone et d'azote. Ces deux systèmes activent l'expression de leurs gènes-cibles de concert avec le facteur sigma alternatif RpoN. En outre, NtrB/C et CbrA/B régulent aussi le métabolisme secondaire, contrôlant notamment la production d'importants facteurs de virulence. En plus de toutes ces régulations génétiques fines ayant lieu au niveau transcriptionnel, P. aeruginosa est aussi capable de moduler son métabolisme en se servant de petits ARNs régulateurs non-codants (ARNncs), qui régulent l'expression génétique à un niveau post- transcriptionnel par divers mécanismes sophistiqués et contribuent à rendre particulièrement rapide l'adaptation physiologique de cette bactérie. Au cours de nos recherches sur de nouveaux ARNncs dépendant du facteur sigma RpoN et impliqués dans l'adaptation nutritionnelle de P. aeruginosa PAOl, nous avons découvert NrsZ (Nitrogen regulated sRNA), un ARNnc induit par la cascade NtrB/C-RpoN en condition de carence en azote. NrsZ a une architecture unique, composée de trois structures en tige- boucle (TB I, II et III) hautement similaires et séparées par des « espaceurs » ayant des séquences variables. De plus, cet ARNnc est clivé en petits fragments correspondant au trois molécules en tige-boucle, par un processus de clivage interne impliquant l'endoribonucléase RNase E. Concernant les fonctions de NrsZ chez P. aeruginosa PAOl, cet ARNnc est capable d'induire la motilité de type « swarming » et la production de biosurfactants, nommés rhamnolipides. Cette régulation est due à l'activation par NrsZ de l'expression de rhlA, un gène essentiel pour la motilité de type swarming et pour la production de rhamnolipides. Étonnamment, la structure TB I est capable d'assurer à elle seule la fonction régulatrice de NrsZ sur l'expression de rhlA, suggérant que ces molécules TBs sont les unités fonctionnelles de cet ARNnc modulaire. Cependant, le mécanisme moléculaire par lequel NrsZ active l'expression de rhlA demeure à ce jour incertain et est actuellement à l'étude. En plus, le réseau de régulations médiées par NrsZ a été étudié par une analyse de transcriptome qui a indiqué que de nombreux gènes impliqués dans le métabolisme primaire ou secondaire seraient régulés par NrsZ. Pour accentuer l'importance de NrsZ, nous avons étudié sa conservation dans d'autres espèces de Pseudomonas. Ainsi, nous avons démontré que NrsZ est conservé et exprimé en situation de carence d'azote par les souches Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48, Pseudomonas syringae pv. tomato DC3000, quatre espèces ayant des caractéristiques écologiques très différentes, suggérant que NrsZ joue un rôle important dans l'adaptation du genre Pseudomonas envers la carence en azote. Chez toutes les souches étudiées, les différents homologues de NrsZ présentent une architecture similaire faite de TBs conservées et d'espaceurs. Cependant, le nombre de TBs n'est pas identique et peut varier de une à six copies selon la souche. Les différentes versions de NrsZ sont clivées en petites molécules dans ces quatre souches, comme il a été observé chez P. aeruginosa PAOl. De plus, l'expression hétérologue des différentes variantes de NrsZ est capable de restaurer l'expression de rhlA, la motilité swarming et la production de rhamnolipides dans une souche de P. aeruginosa dont nrsZ a été inactivé. Par bien des aspects, NrsZ est un ARNnc atypique dans le monde bactérien. À notre connaissance, NrsZ est le premier ARNnc décrit comme étant régulé par le système NtrB/C. De plus, son unique architecture modulaire et son clivage en petites molécules similaires suggèrent que NrsZ appartient à une nouvelle famille d'ARNncs bactériens.
Resumo:
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.
Resumo:
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.
Resumo:
This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10,000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat.
Resumo:
This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat.
Resumo:
Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNA(Lys3), to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3'-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5'-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNA(Lys3). The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s(2)U(34), and pseudouridine, Psi(39), appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U(162)*Psi(39) and G(163)*A(38), that maintained a reasonable A-form helix diameter. The tRNA's s(2)U(34) stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Psi(39) stabilized the adjacent mismatched pairs.
Resumo:
Two adjacent tracts of tropical secondary forest, situated in Itambé do Mato Dentro, south-eastern Brazil, which had been regenerating for 15 and 40 years after clearing, were compared with the purpose of detecting differences in species diversity and composition, species guild composition (regeneration, stratification and dispersion), and stand structure. Four and three 1,125 m² plots laid on the 15- and 40-year-old stands, respectively, sampled 2,430 trees with diameter at the base of the stem > 5 cm. The number of species (S = 199) was high for this forest type and significantly higher for the older stand. Tree density was significantly higher in the younger stand, particularly for smaller trees, whereas the two stands did not differ in both basal area and volume per hectare. Trees of shade-tolerant and understory species were significantly more abundant in the older stand. Though sharing a large proportion of species (49%), the two stands differed significantly in the abundance of many species. Live stumps probably contributed to the relatively quick restoration of some forest characteristics, particularly species diversity, basal area and volume.