907 resultados para RISKS
Resumo:
The occurrence frequency of failure events serve as critical indexes representing the safety status of dam-reservoir systems. Although overtopping is the most common failure mode with significant consequences, this type of event, in most cases, has a small probability. Estimation of such rare event risks for dam-reservoir systems with crude Monte Carlo (CMC) simulation techniques requires a prohibitively large number of trials, where significant computational resources are required to reach the satisfied estimation results. Otherwise, estimation of the disturbances would not be accurate enough. In order to reduce the computation expenses and improve the risk estimation efficiency, an importance sampling (IS) based simulation approach is proposed in this dissertation to address the overtopping risks of dam-reservoir systems. Deliverables of this study mainly include the following five aspects: 1) the reservoir inflow hydrograph model; 2) the dam-reservoir system operation model; 3) the CMC simulation framework; 4) the IS-based Monte Carlo (ISMC) simulation framework; and 5) the overtopping risk estimation comparison of both CMC and ISMC simulation. In a broader sense, this study meets the following three expectations: 1) to address the natural stochastic characteristics of the dam-reservoir system, such as the reservoir inflow rate; 2) to build up the fundamental CMC and ISMC simulation frameworks of the dam-reservoir system in order to estimate the overtopping risks; and 3) to compare the simulation results and the computational performance in order to demonstrate the ISMC simulation advantages. The estimation results of overtopping probability could be used to guide the future dam safety investigations and studies, and to supplement the conventional analyses in decision making on the dam-reservoir system improvements. At the same time, the proposed methodology of ISMC simulation is reasonably robust and proved to improve the overtopping risk estimation. The more accurate estimation, the smaller variance, and the reduced CPU time, expand the application of Monte Carlo (MC) technique on evaluating rare event risks for infrastructures.
Resumo:
Part 17: Risk Analysis
Resumo:
Although mitigating GHG emissions is necessary to reduce the overall negative climate change impacts on crop yields and agricultural production, certain mitigation measures may generate unintended consequences to food availability and access due to land use competition and economic burden of mitigation. Prior studies have examined the co-impacts on food availability and global producer prices caused by alternative climate policies. More recent studies have looked at the reduction in total caloric intake driven by both changing income and changing food prices under one specific climate policy. However, due to inelastic calorie demand, consumers’ well-being are likely further reduced by increased food expenditures. Built upon existing literature, my dissertation explores how alternative climate policy designs might adversely affect both caloric intake and staple food budget share to 2050, by using the Global Change Assessment Model (GCAM) and a post-estimated metric of food availability and access (FAA). My dissertation first develop a set of new metrics and methods to explore new perspectives of food availability and access under new conditions. The FAA metric consists of two components, the fraction of GDP per capita spent on five categories of staple food and total caloric intake relative to a reference level. By testing the metric against alternate expectations of the future, it shows consistent results with previous studies that economic growth dominates the improvement of FAA. As we increase our ambition to achieve stringent climate targets, two policy conditions tend to have large impacts on FAA driven by competing land use and increasing food prices. Strict conservation policies leave the competition between bioenergy and agriculture production on existing commercial land, while pricing terrestrial carbon encourages large-scale afforestation. To avoid unintended outcomes to food availability and access for the poor, pricing land emissions in frontier forests has the advantage of selecting more productive land for agricultural activities compared to the full conservation approach, but the land carbon price should not be linked to the price of energy system emissions. These results are highly relevant to effective policy-making to reduce land use change emissions, such as the Reduced Emissions from Deforestation and Forest Degradation (REDD).
Resumo:
A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.
Resumo:
Adoption of new cattle management practices by Indonesian smallholders occurs less as a ‘technology transfer’ in the classical sense but rather as a series of conscious decisions by farming households weighing risks and resources as well as matching innovations to livelihood strategies. This paper uncovers the context of decisions and communication of innovations by way of social networks. The research looks at two geographically distinct cases where new cattle management practices have been introduced. We apply the lens of a common sense framework initially introduced by Clifford Geertz. Smallholder decisions are analysed within a socio-cultural context and a particular set of resources, risks and livelihood objectives. We show that the respective value placed on land, cattle and food security is central to adoption of new cattle management techniques. Far from accepting everything novel, smallholders are selective and willing to make changes to their farming system if they do not conflict with livelihood strategies. Innovations are communicated through a range of existing social networks and are either matched to existing livelihood strategies or perceived as stepping-stones out of agriculture.
Resumo:
2016
Resumo:
2016
Resumo:
Esse artigo pretende discutir como as transformações tecnológicas vêm influenciando a ciência geográfica, especificamente com o advento das geotecnologias. Diante de inúmeras potencialidades e aplicações na análise e gestão territorial, nós devemos refletir sobre seu real significado, que certamente ultrapassa o caráter meramente técnico. É necessário compreender a vasta dimensão social, política e econômica que abrangem. Atualmente as técnicas são cada vez mais utilizadas, aceitas e menos compreendidas, o que pode implicar riscos para a sociedade em função de interpretações equivocadas e muitas vezes desprovidas de princípios éticos. Vinte anos após a “unificação” do mundo com a queda do Muro de Berlim, o cenário sociocultural e político se redefine em um paradigma de contradições. As inovações tecnológicas funcionam como um instrumento emblemático subordinado ao mercado financeiro e a globalização marca a atual fase do capitalismo, que segue seu curso encontrando as limitações inerentes à tecnologia em que se sustenta. This paper intends to discuss how the technological changes have affected the geographical science, specifically with the advent of geotechnologies. Up against with great potential and applications in analysis and land management, we must to reflect on its real meaning, which certainly goes beyond the merely technical. It’s necessary to understand the broad social, political and economic dimension wich inclued. Currently, the techniques are increasingly used, accepted and least understood, which may to implicate a risk to society due to misinterpretation and often devoid of ethical principles. Twenty years after the "unification" of the world with the fall of the Berlin Wall, the cultural and political landscape was altered in a paradigm of contradictions. Technological innovations work as a emblematic instrument subordinate to financial markets and globalization marks the current phase of capitalism, which runs its course finding the limitations inherent in the technology which supports.
Resumo:
Changing or creating an organisation means creating a new process. Each process involves many risks that need to be identified and managed. The main risks considered here are procedural and legal risks. The former are related to the risks of errors that may occur during processes, while the latter are related to the compliance of processes with regulations. Managing the risks implies proposing changes to the processes that allow the desired result: an optimised process. In order to manage a company and optimise it in the best possible way, not only should the organisational aspect, risk management and legal compliance be taken into account, but it is important that they are all analysed simultaneously with the aim of finding the right balance that satisfies them all. This is the aim of this thesis, to provide methods and tools to balance these three characteristics, and to enable this type of optimisation, ICT support is used. This work isn’t a thesis in computer science or law, but rather an interdisciplinary thesis. Most of the work done so far is vertical and in a specific domain. The particularity and aim of this thesis is not to carry out an in-depth analysis of a particular aspect, but rather to combine several important aspects, normally analysed separately, which however have an impact and influence each other. In order to carry out this kind of interdisciplinary analysis, the knowledge base of both areas was involved and the combination and collaboration of different experts in the various fields was necessary. Although the methodology described is generic and can be applied to all sectors, the case study considered is a new type of healthcare service that allows patients in acute disease to be hospitalised to their home. This provide the possibility to perform experiments using real hospital database.
Resumo:
Nowadays, cities deal with unprecedented pollution and overpopulation problems, and Internet of Things (IoT) technologies are supporting them in facing these issues and becoming increasingly smart. IoT sensors embedded in public infrastructure can provide granular data on the urban environment, and help public authorities to make their cities more sustainable and efficient. Nonetheless, this pervasive data collection also raises high surveillance risks, jeopardizing privacy and data protection rights. Against this backdrop, this thesis addresses how IoT surveillance technologies can be implemented in a legally compliant and ethically acceptable fashion in smart cities. An interdisciplinary approach is embraced to investigate this question, combining doctrinal legal research (on privacy, data protection, criminal procedure) with insights from philosophy, governance, and urban studies. The fundamental normative argument of this work is that surveillance constitutes a necessary feature of modern information societies. Nonetheless, as the complexity of surveillance phenomena increases, there emerges a need to develop more fine-attuned proportionality assessments to ensure a legitimate implementation of monitoring technologies. This research tackles this gap from different perspectives, analyzing the EU data protection legislation and the United States and European case law on privacy expectations and surveillance. Specifically, a coherent multi-factor test assessing privacy expectations in public IoT environments and a surveillance taxonomy are proposed to inform proportionality assessments of surveillance initiatives in smart cities. These insights are also applied to four use cases: facial recognition technologies, drones, environmental policing, and smart nudging. Lastly, the investigation examines competing data governance models in the digital domain and the smart city, reviewing the EU upcoming data governance framework. It is argued that, despite the stated policy goals, the balance of interests may often favor corporate strategies in data sharing, to the detriment of common good uses of data in the urban context.
Resumo:
Contaminants of emerging concern are increasingly detected in the water cycle, with endocrine-disrupting chemicals (EDCs) receiving attention due to their potential to cause adverse health effects even at low concentrations. Although the EU has recently introduced some EDCs into drinking water legislation, most drinking water treatment plants (DWTPs) are not designed to remove EDCs, making their detection and removal in DWTPs an important challenge. The aim of this doctoral project was to investigate hormones and phenolic compounds as suspected EDCs in drinking waters across the Romagna area (Italy). The main objectives were to assess the occurrence of considered contaminants in source and drinking water from three DWTPs, characterize the effectiveness of removal by different water treatment processes, and evaluate the potential biological impact on drinking water and human health. Specifically, a complementary approach of target chemical analysis and effect-based methods was adopted to explore drinking water quality, treatment efficacy, and biological potential. This study found that nonylphenol (NP) was prevalent in all samples, followed by BPA. Sporadic contamination of hormones was found only in source waters. Although the measured EDC concentrations in drinking water did not exceed threshold guideline values, the potential role of DWTPs as an additional source of EDC contamination should be considered. Significant increases in BPA and NP levels were observed during water treatment steps, which were also reflected in estrogenic and mutagenic responses in water samples after the ultrafiltration. This highlights the need to monitor water quality during various treatment processes to improve the efficiency of DWTPs. Biological assessments on finished water did not reveal any bioactivity, except for few treated water samples that exhibited estrogenic responses. Overall, the data emphasize the high quality of produced drinking water and the value of applying integrated chemical analysis and in vitro bioassays for water quality assessment.
Resumo:
Agriculture market instability impedes achieving the global goal of sustainable and resilient food systems. Currently, the support to producers reaches the mammoth USD 540 billion a year and is projected to reach USD 1.8 trillion by 2030. This gigantic increase requires a repurposing agricultural support strategy (RASS), considering the market country-specific circumstances. These circumstances may vary with geographic locations, marketing structures, and product value chains. The fruit production system is crucial for health-conscious consumers and profit-oriented producers for food and nutritional security. Export is one of the main driving forces behind the expansion of the fruit sector, and during the year 2010-2018, trade significantly outpaced production increases. The previous literature states that irregular and unpredictable behaviour — Chaos — can arise from entirely rational economic decision-making within markets. Different markets' direct/indirect linkages through trade create trade hubs, and uncertainty may function as an avenue to transmit adverse shocks and increase vulnerability rather than contribute to resilience. Therefore, distinguishing Chaos into an endogenous and exogenous pattern of behaviour is cradled to formulate an effective RASS for resilient food systems and to understand global food crises. The present research is aimed at studying the market dynamics of three regional trade hubs, i.e., Brazil (South America), Italy (Europe), and Pakistan (Asia), each representing advanced to traditional value chains to control uncertainty (risks). The present research encompasses 1) a systematic review to highlight the research dynamism and identify grey-areas of research. Based on the findings, we have investigated the 2) nonlinear impacts of climate-induced price responsiveness in monopsony markets. Once we highlighted the importance of marketing structures/arrangements, 3) we developed a risk transmission framework to address the co-evolving impacts in complex dynamic interactions.
Resumo:
Interpreting involves occupational health risks that can affect interpreters’ health both on the physiological and psychological level. The aim of this study is to raise awareness about occupational health risks for interpreters and the importance of protecting interpreter’s health. In interpreting studies health risks are usually discussed with regard to professional interpreting and according to the traditional distinctions between signed and spoken language, interpreting modes and settings. This exploratory study is an attempt to gather a body of knowledge on occupational health risks for interpreters and possible remedies independently of professional status and the above-mentioned distinctions. This was done by means of a review of relevant interpreting literature and the systematic exploration of materials produced or published by professional associations of interpreters, selected according to pre-defined criteria. The results were organised into macro-categories of occupational health risks and the items retrieved from the selected materials were inserted in a database.
Resumo:
This article analyzes food insecurity and hunger in Brazilian families with children under five years of age. This was a nationally representative cross-sectional study using data from the National Demographic and Health Survey on Women and Children (PNDS-2006), in which the outcome variable was moderate to severe food insecurity, measured by the Brazilian Food Insecurity Scale (EBIA). Prevalence estimates and prevalence ratios were generated with 95% confidence intervals. The results showed a high prevalence of moderate to severe food insecurity, concentrated in the North and Northeast regions (30.7%), in economic classes D and E (34%), and in beneficiaries of conditional cash transfer programs (36.5%). Multivariate analysis showed that the socioeconomic relative risks (beneficiaries of conditional cash transfers), regional relative risks (North and Northeast regions), and economic relative risks (classes D and E) were 1.8, 2.0 and 2.4, respectively. Aggregation of the three risks showed 48% of families with moderate to severe food insecurity, meaning that adults and children were going hungry during the three months preceding the survey.