997 resultados para RIBOSOMAL DNA
Resumo:
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI). Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine. This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.
Resumo:
Rickettsia species antibodies have been detected in some cats but it is unknown whether infected cats develop clinical signs. The prevalence of Rickettsia species deoxyribonucleic acid (DNA) in blood from clinically ill cats has not been determined. The objective of this study was to determine if cats with fever (body temperature >= 102.5 degrees F [39.2 degrees C]) were more likely to have evidence of rickettsial infection than healthy, age-matched, control cats with a body temperature < 102.5 degrees F. Rickettsia species polymerase chain reaction (PCR) assays were performed to detect rickettsial DNA extracted from blood (71 paired samples), indirect immunofluorescence assays (IFA) were performed to detect serum antibodies against Rickettsia felis (90 paired samples) and Rickettsia rickettsii (91 paired samples), and the results between pairs were compared. All samples were negative for Rickettsia species DNA. More cats with fever were seropositive for R felis or R rickettsii than control cats, but results were not statistically significant. Results of this pilot study failed to show an association between Rickettsia species DNA or Rickettsia species antibodies and fever. (c) 2008 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hammondia heydorni is a cyst forming coccidia closely related to other apicomplexans, such as Toxoplasma gondii, Neospora caninum and Hammondia hammondi with a two-host life cycle. Dogs and other canids as red foxes (Vulpes vulpes) and coyotes (Canis latrans) may serve as definitive hosts for H. heydorni. Sporulated oocysts are infective for cattle, sheep and goats, which may serve as intermediate hosts. Herein, we describe the ability of crab-eating fox (Cerdocyon thous), a wild carnivore that is commonly found from northern Argentina to northern South America, to serve as definitive host of H. heydorni. The whole masseter muscle and brain from two 2-year-old bovines were collected, minced and pooled together for the fox infection. The bovine pooled tissues were equally administered to four foxes, in two consecutive days. Two foxes shed subspherical unsporulated oocysts measuring 10-15 mu m, after 8 and 9 days post-infection, respectively. One of the foxes eliminated oocysts for 5 days, while the other fox shed oocysts for 9 days. A DNA sample of oocysts detected at each day of oocyst elimination was tested by two PCRs, one of them carried out employing primers directed to the common toxoplasmatiid 18S and 5.8S ribosomal RNA coding genes (PCR-ITS1) and the other based on heat-shock protein 70 kDa coding gene (PCR-HSP70). These samples were also submitted to a N. caninum specific nested-PCR protocol based on a N. caninum specific gene (Nc5-nPCR). All of them were positive by PCR-ITS1 and PCR-HSP70 but negative by Nc5-nPCR. The PCR-ITS1 and PCR-HSP70 nucleotide sequences amplified from the oocysts shed by the foxes revealed 100% identity with homologous sequences of H. heydorni. In conclusion, it is clear that H. heydorni also uses the crab-eating fox as a definitive host. The crab-eating fox is usually reported to live in close contact with livestock in several regions of Brazil. Therefore, it is reasonable to infer that such carnivores may play an important role in the sylvatic and domestic cycles of H. heydorni infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Animals kept as pets may be considered sentinels for environmental factors to which humans could be exposed. Olfactory and respiratory epithelia are directly subjected to airborne factors, which could cause DNA lesions, and the alkaline comet assay is considered a reliable tool for the assessment of DNA damage. The objective of this work is to evaluate the extent of DNA damage by the comet assay of the olfactory and respiratory epithelia of dogs from different regions of the city of sao Paulo, Brazil. Thirty-three clinically healthy dogs, aged 5 years or more, were used in the study, with 7 from the North region of Sao Paulo, 7 from the South region, 3 dogs from the East region, and 16 dogs from the West city region. Three dogs younger than 6 months were used as controls. DNA damage was analyzed by the alkaline comet assay. We observed no difference in histopathological analysis of olfactory and respiratory epithelia between dogs from different regions of Sao Paulo. Dogs older than 5 years presented significantly higher comet length in both olfactory and respiratory epithelia, when compared with controls, indicating DNA damage. When separated by regions, olfactory and respiratory epithelia presented similar DNA damage in dogs from different regions of Sao Paulo, corroborating with similar levels of particulate matter index (PM10) in all regions of the city. In this study, we report for the first time that the comet assay can be used to quantify the extent of DNA damage in dog olfactory and respiratory epithelia, and that comet length (DNA damage) increases with age, probably due to environmental factors. Air pollution, as measured by PM 10, can be responsible for this DNA damage. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Two different regions of the infected cell protein 4 (ICP4) gene of infectious laryngotracheitis virus (ILTV) were amplified and sequenced for characterization of field isolates and tissue culture-origin (TCO) and chicken embryo-origin (CEO) vaccine strains. Phylogenetic analysis of the two regions showed differences in nucleotide and amino acid sequences between field isolates and attenuated vaccines. The PCR-RFLP results were identical to those obtained by DNA sequencing and validated their use to differentiate ILTV strains. The approach using the sequencing of the two fragments of the ICP4 gene showed to be an efficient and practical procedure to differentiate between field isolates and vaccine strains of ILTV. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Sperm-mediated gene transfer (SMGT) is a fast and low-cost method used to produce transgenic animals. The objective of this study was to evaluate the effects of the concentration of exogenous DNA and the duration of incubation on DNA uptake by bovine spermatozoa and subsequently the integrity of sperm DNA and sperm apoptosis. Spermatozoa (5 X 10(6) cells/mL) were incubated with 100, 300, or 500 ng of exogenous DNA (pEYFP-Nuc plasmid) for 60 or 120 min at 39 degrees C. The amount of exogenous DNA associated with spermatozoa was quantified by real-time PCR, and the percentages of DNA fragmentation in spermatozoa were evaluated using SCSA and a TUNEL assay, coupled with flow cytometry. Uptake of exogenous DNA increased significantly as incubation increased from 60 to 120 min (0.0091 and 0.028 ng, respectively), but only when the highest exogenous DNA concentration (500 ng) was used (P < 0.05). Based on SCSA and TUNEL assays, there was no effect of exogenous DNA uptake or incubation period on sperm DNA integrity. In conclusion, exogenous DNA uptake by bovine spermatozoa was increased with the highest exogenous DNA concentration and longest incubation period, but fragmentation of endogenous DNA was apparently not induced. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to determine the prevalence of Cryptosporidium species and genotypes in birds kept in captivity in Brazil. A total of 966 samples from 18 families of birds was collected and stored in 5% potassium dichromate solution at 4 degrees C until processing. Oocysts were purified in Sheather sugar solution following extraction of genomic DNA. Molecular analyses were performed using nested-PCR for amplification of fragments of the 18S subunit of rRNA gene and of the actin gene. Amplification of Cryptosporidium DNA fragments was obtained in 47 (4.86%) samples. Sequencing of amplified fragments and phylogenetic analyses allowed the identification of Cryptosporidium baileyi in a black vulture (Coragyps atratus), a domestic chicken (Gallus gallus domesticus) and a saffron finch (Sicalis flaveola); Cryptosporidium galli in canaries (Serinus canaria), a cockatiel (Nymphicus hollandicus) and lesser seed-finches (Oryzoborus angolensis); Cryptosporidium meleagridis in a domestic chicken (G. g. domesticus); Cryptosporidium parvum in a cockatiel (N. hollandicus); Cryptosporidium avian genotype I in a canary (S. canaria) and an Indian peafowl (Pavo cristatus); Cryptosporidium avian genotype II in ostriches (Struthio camelus) and Cryptosporidium avian genotype III in a cockatiel (N. hollandicurs) and a peach-faced lovebird (Agapornis roseicolis). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to assess the effect of exogenous DNA and incubation time on the viability of bovine sperm. Sperm were incubated at a concentration of 5 x 10(6)/ml with or without plasmid pEYFP-NUC. Fluorescent probes, propidium iodide/Hoechst 33342, FITC-PSA and JC-1, were used to assess plasma membrane integrity (PMI), acrosome membrane integrity (AMI) and mitochondrial membrane potential (MMP) respectively at 0, 1, 2, 3 and 4 h of incubation. Exogenous DNA addition did not affect sperm viability; however, incubation time was related to sperm deterioration. Simultaneous assessment of PMI, AMI and MMP showed a reduction in the number of sperm with higher viability (integrity of plasma and acrosome membranes and high mitochondrial membrane potential) from 58.7% at 0 h to 7.5% after 4 h of incubation. Lower viability sperm (damaged plasma and acrosome membranes and low mitochondrial membrane potential) increased from 4.6% at 0 h to 25.99% after 4 h of incubation. When PMI, AMI and MMP were assessed separately we noticed a reduction in plasma and acrosome membrane integrity and mitochondrial membrane potential throughout the incubation period. Therefore, exogenous DNA addition does not affect sperm viability, but the viability is reduced by incubation time.
Resumo:
The organisation of cells of the planctomycete species Pirellula marina, Isosphaera pallida, Gemmata obscuriglobus, Planctomyces mat-is and Candidatus Brocadia anammoxidans was investigated based on ultrastructure derived from thin-sections of cryosubstituted cells, freeze-fracture replicas, and in the case of Gemmata obscuriglobus and Pirellllla marina, computer-aided 3-D reconstructions from serial sections of cryosubstituted cells. All planctomycete cells display a peripheral ribosome-free region, termed here the paryphoplasm, surrounding the perimeter of the cell, and an interior region including any nucleoid regions as well as ribosome-like particles, bounded by a single intracytoplasmic membrane (ICM), and termed the pirellulosome in Pirellula species. Immunogold labelling and RNase-gold cytochemistry indicates that in planctomycetes all the cell DNA is contained wholly within the interior region bounded by the ICM, and the paryphoplasm contains no DNA but at least some of the cell's RNA. The ICM in Isosphaera pallida and Planctomyces mat-is is invaginated such that the paryphoplasm forms a major portion of the cell interior in sections, but in other planctomycetes it remains as a peripheral zone. In the anaerobic ammonium-oxidising (anammox process) chemoautotroph Candidatus Brocadia anammoxidans the interior region bounded by ICM contains a further internal single-membrane-bounded region, the anam-moxosome. In Gemmata obscuriglobus. the interior ICM-bounded region contains the nuclear body, a double-membrane-bounded region containing the cell's nucleoid and all genomic DNA in addition to some RNA. Shared features of cell compartmentalisation in different planctomycetes are consistent with the monophyletic nature of the planctomycetes as a distinct division of the Bacteria. The shared organisational plan for the planctomycete cell constitutes a new type not known in cells of other bacteria.
Resumo:
The significance of low-level DNA microsatellite instability (MSI-L) is not well understood. K-ras mutation is associated with MSI-L colorectal cancer and with the silencing of the DNA repair gene O-6-methylguanine DNA methyltransferase (MGMT) by methylation of its promoter region. MGMT methylation was studied in sporadic colorectal cancers stratified as DNA microsatellite instability-high (n = 23), MSI-L (n = 44), and microsatellite-stable (n = 23). Methylation-specific PCR was used to detect MGMT-promoter hypermethylation in 3 of 23 (13%) microsatellite instability-high, in 28 of 44 (64%) MSI-L, and in 6 of 23 (26%) microsatellite-stable cancers (P = 0.0001). K-ras was mutated in 20 of 29 (69%) methylated MSI-L cancers and in 2 of 15 (13%) unmethylated MSI-L cancers (P = 0.001), indicating a relationship between MGMT-methylation and mutation of K-ras. Loss of nuclear expression of MGMT was demonstrated immunohistochemically in 23 of 31 (74%) cancers with methylated MGMT and in 10 of 49 (20%) cancers with nonmethylated MGMT (P < 0.0001). Loss of expression of MGMT was also demonstrated in 9 of 31 serrated polyps. Silencing of MGMT may predispose to mutation by overwhelming the DNA mismatch repair system and occurs with greatest frequency in MSI-L colorectal cancers.
Resumo:
Background: The diagnosis of acute pulmonary thromboembolism (APT) and its severity is challenging. No previous study has examined whether there is a linear relation between plasma DNA concentrations and the severity of APT. We examined this hypothesis in anesthetized dogs. We also examined the changes in plasma DNA concentrations in microspheres lung embolization and whether the therapy of APT with nitrite could modify APT-induced changes in plasma DNA concentrations. In vitro DNA release from blood clots was also studied. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. A group of dogs received 300 pm microspheres into the inferior vena cava to produce similar pulmonary hypertension. Another group of dogs received 6.75 mu mol/kg nitrite after APT with blood clots of 5 ml/kg. Hemodynamic evaluations were carried out for 120 min. DNA was extracted from plasma samples using QIAamp DNA Blood Mini Kit and quantified using Quant-iT (TM) PicoGreen (R) dsDNA detection kit at baseline and 120 min after APT. Results: APT produced dose-dependent increases in plasma DNA concentrations. which correlated positively with pulmonary vascular resistance (P=0.002, r=0.897) and with mean pulmonary arterial pressure (P=0.006, r=0.856). Conversely, lung embolization with microspheres produced no significant changes in plasma DNA concentrations. While nitrite attenuated APT-induced pulmonary hypertension, it produced no changes in plasma DNA concentrations. Blood clots released dose-dependent amounts of DNA in vitro. Conclusions: Cell-free DNA concentrations increase in proportion to the severity of APT, probably as a result of increasing amounts of thrombi obstructing the pulmonary vessels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
To investigate the efficiency of encapsidation of plasmid by papillomavirus virus-like particles (PV VLPs), and the infectivity of the resultant PV pseudovirions, Cos-1 cells were transfected with an 8-kb plasmid incorporating a green fluorescent protein (GFP) reporter gene (pGSV), and infected with bovine PV (BPV-1) L1/L2 recombinant vaccinia virus to produce BPV1 pseudovirions. Approximately 1 in 1.5x10(4) of dense (1.35 g/ml) PV pseudovirions and 0.3 in 10(4) Of less-dense (1.29 g/ml) pseudovirions packaged an intact pGSV plasmid. The majority (>75%) of packaged plasmids contained deletions, and the deletions affected all tested genes. After exposure of Cos-1 cells to BPV-1 pseudovirions at an MOI of 40,000:1, 6% of cells expressed GFP giving a calculated efficiency of delivery of the pGSV plasmid, by pseudovirions which had packaged an intact plasmid, of approximately 5%. Plasmid delivery was not effected by purified pGSV plasmid, was blocked by antiserum against BPV-1, and was not blocked by DNase treatment of pseudovirions, confirming that delivery was mediated by DNA within the pseudovirion. We conclude that a major limitation to the use of PV pseudovirions as a gene delivery system is that intact plasmid DNA is not efficiently selected for packaging by VLPs in cell-based pseudovirions production systems.
Resumo:
An emerging idea is that long-term alcohol abuse results in changes in gene expression in the brain and that these changes are responsible at least partly for alcohol tolerance, dependence and neurotoxicity, The overall goal of our research is to identify genes which are differentia[ly expressed in the brains of well-characterized human alcoholics as compared with non-alcoholics. This should identify as-yet-unknown alcohol-responsive genes, and may well confirm changes in the expression of genes which have been delineated in animal models of alcohol abuse. Cases were carefully selected and samples pooled on the basis of relevant criteria; differential expression was monitored by microarray hybridization. The inherent diversity of human alcoholics can be exploited to identify genes associated with specific pathological processes, as well as to assess the effects of concomitant disease, severity of brain damage, drinking behavior, and factors such as gender and smoking history. initial results show selective changes in gene expression in alcoholics; of particular importance is a coordinated reduction in genes coding for myelin components, Copyright (C) 2001 National Science Council, ROC and S. Karger AG, Basel.