912 resultados para REVERSIBLE MULTISTEP
Resumo:
The ability of tumor cells to leave a primary tumor, to disseminate through the body, and to ultimately seed new secondary tumors is universally agreed to be the basis for metastasis formation. An accurate description of the cellular and molecular mechanisms that underlie this multistep process would greatly facilitate the rational development of therapies that effectively allow metastatic disease to be controlled and treated. A number of disparate and sometimes conflicting hypotheses and models have been suggested to explain various aspects of the process, and no single concept explains the mechanism of metastasis in its entirety or encompasses all observations and experimental findings. The exciting progress made in metastasis research in recent years has refined existing ideas, as well as giving rise to new ones. In this review we survey some of the main theories that currently exist in the field, and show that significant convergence is emerging, allowing a synthesis of several models to give a more comprehensive overview of the process of metastasis. As a result we postulate a stromal progression model of metastasis. In this model, progressive modification of the tumor microenvironment is equally as important as genetic and epigenetic changes in tumor cells during primary tumor progression. Mutual regulatory interactions between stroma and tumor cells modify the stemness of the cells that drive tumor growth, in a manner that involves epithelial-mesenchymal and mesenchymal-epithelial-like transitions. Similar interactions need to be recapitulated at secondary sites for metastases to grow. Early disseminating tumor cells can progress at the secondary site in parallel to the primary tumor, both in terms of genetic changes, as well as progressive development of a metastatic stroma. Although this model brings together many ideas in the field, there remain nevertheless a number of major open questions, underscoring the need for further research to fully understand metastasis, and thereby identify new and effective ways of treating metastatic disease.
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
This paper investigates the timing of foreign direct investment (FDI) in the banking sector. The importance of this issue would arise from the existence of differential benefits associated to be the first entrant in a foreign location. Nevertheless, when uncertainty is considered, the existence of some Ownership-Location-Internalization (OLI) advantages can make FDI less reversible and/or more delayable and therefore it may be optimal for the firm to delay the investment until the uncertainty is resolved. In this paper, the nature of OLI advantages in the banking sector has been examined in order to propose a prognostic model of the timing of foreign direct investment. The model is then tested for the Spanish case using duration analysis.
Resumo:
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Resumo:
Abstract: To have an added value over BMD, a CRF of osteoporotic fracture must be predictable of the fracture, independent of BMD, reversible and quantifiable. Many major recognized CRF exist.Out of these factorsmany of themare indirect factor of bone quality. TBS predicts fracture independently of BMD as demonstrated from previous studies. The aim of the study is to verify if TBS can be considered as a major CRF of osteoporotic fracture. Existing validated datasets of Caucasian women were analyzed. These datasets stem from different studies performed by the authors of this report or provided to our group. However, the level of evidence of these studies will vary. Thus, the different datasets were weighted differently according to their design. This meta-like analysis involves more than 32000 women (≥50 years) with 2000 osteoporotic fractures from two prospective studies (OFELY&MANITOBA) and 7 crosssectional studies. Weighted relative risk (RR) for TBS was expressed for each decrease of one standard deviation as well as per tertile difference (TBS=1.300 and 1.200) and compared with those obtained for the major CRF included in FRAX®. Overall TBS RR obtained (adjusted for age) was 1.79 [95%CI-1.37-2.37]. For all women combined, RR for fracture for the lowest comparedwith themiddle TBS tertilewas 1.55[1.46- 1.68] and for the lowest compared with the highest TBS tertile was 2.8[2.70-3.00]. TBS is comparable to most of the major CRF (Fig 1) and thus could be used as one of them. Further studies have to be conducted to confirm these first findings.
Resumo:
Los azobencenos son compuestos extensamente utilizados en la industria. Éstos contienen un grupo funcional azo que gracias a su isomerización reversible (E)/(Z) foto-inducida y específica del grupo N=N, ha llevado a la utilización de este tipo de compuestos para la generación de interruptores moleculares. En este trabajo se pretende aplicar este peculiar comportamiento del grupo azo a la catálisis heterogénea de epoxidación de alquenos, con la idea de activar y desactivar a voluntad la actividad de sistemas catalíticos de rutenio inmovilizados sobre nanopartículas mediante la acción de un estímulo externo, la luz.
Resumo:
When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored. We used a simple model to study the (short-term) population consequences of environmental sex reversal (ESR). We examined the effects on sex ratios, sex chromosome frequencies, and population growth and persistence after exposure to environmental forces with feminizing or masculinizing tendencies. When environmental feminization was strong, X chromosomes were driven to extinction. Analogously, extinction of normally male-linked genetic factors (e.g., Y chromosomes) was caused by continuous environmental masculinization. Although moderate feminization was beneficial for population growth in the absence of large viability effects, our results suggest that the consequences of ESR are generally negative in terms of population size and the persistence of sex chromosomes. Extreme sex ratios resulting from high rates of ESR also reduced effective population sizes considerably. This may limit any evolutionary response to the deleterious effects of ESR. Our findings suggest that ESR changes population growth and sex ratios in some counter-intuitive ways and can change the predominant factor in sex determination from genetic to fully environmental, often within only a few tens of generations. Populations that lose genetic sex determination may quickly go extinct if the environmental forces that cause sex reversal cease.
Resumo:
PURPOSE: Determine the effect of repeated intravitreal injections of ranibizumab (0.5 mg; 0.05 ml) on retrobulbar blood flow velocities (BFVs) using ultrasound imaging quantification in twenty patients with exudative age-related macular degeneration treated for 6 months. METHODS: Visual acuity (ETDRS), central macular thickness (OCT), peak-systolic, end-diastolic and mean-BFVs in central retinal (CRA), temporal posterior ciliary (TPCA) and ophthalmic (OA) arteries were measured before, 2 days, 3 weeks and 6 months after the first injection. Patients were examined monthly and received 1-5 additional injections depending on ophthalmologic examination results. RESULTS: Six months after the first injection, a significant increase in visual acuity 50.9 ± 25.9 versus 44.4 ± 21.7 (p < 0.01) and decrease in mean central macular thickness 267 ± 74 versus 377 ± 115 μm (p < 0.001) were observed compared to baseline. Although mean-BFVs decreased by 16%±3% in CRA and 20%±5% in TPCA (p < 0.001) 2 days after the first injection, no significant change was seen thereafter. Mean-BFVs in OA decreased by 19%±5% at week 3 (p < 0.001). However, the smallest number of injections (two injections) was associated with the longest time interval between the last injection and month 6 (20 weeks) and with the best return to baseline levels for mean-BFVs in CRA, suggesting that ranibizumab had reversible effects on native retinal vascular supply after its discontinuation. Moreover, a significant correlation between the number of injections and percentage of changes in mean-BFVs in CRA was observed at month 6 (R = 0.74, p < 0.001) unlike TPCA or OA. CONCLUSION: Ranibizumab could impair the native choroidal and retinal vascular networks, but its effect seems reversible after its discontinuation.
Resumo:
Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.
Resumo:
BACKGROUND & AIMS: Pazopanib has demonstrated clinical benefit in patients with advanced renal cell carcinoma (RCC) and is generally well tolerated. However, transaminase elevations have commonly been observed. This 2-stage study sought to identify genetic determinants of alanine transaminase (ALT) elevations in pazopanib-treated white patients with RCC.¦METHODS: Data from two separate clinical studies were used to examine the association of genetic polymorphisms with maximum on-treatment ALT levels.¦RESULTS: Of 6852 polymorphisms in 282 candidate genes examined in an exploratory dataset of 115 patients, 92 polymorphisms in 40 genes were significantly associated with ALT elevation (p<0.01). Two markers (rs2858996 and rs707889) in the HFE gene, which are not yet known to be associated with hemochromatosis, showed evidence for replication. Because of multiple comparisons, there was a 12% likelihood the replication occurred by chance. These two markers demonstrated strong linkage disequilibrium (r(2)=0.99). In the combined dataset, median (25-75th percentile) maximum ALT values were 1.2 (0.7-1.9), 1.1 (0.8-2.5), and 5.4 (1.9-7.6)×ULN for rs2858996 GG (n=148), GT (n=82), and TT (n=1 2) genotypes, respectively. All 12 TT patients had a maximum ALT>ULN, and 8 (67%) had ALT≥3×ULN. The odds ratio (95% CI) for ALT≥3×ULN for TT genotype was 39.7 (2.2-703.7) compared with other genotypes. As a predictor of ALT≥3×ULN, the TT genotype had a negative predictive value of 0.83 and positive predictive value of 0.67. No TT patients developed liver failure.¦CONCLUSIONS: The rs2858996/rs707889 polymorphisms in the HFE gene may be associated with reversible ALT elevation in pazo-panib-treated patients with RCC.
Resumo:
Phosphorylation of transcription factors is a rapid and reversible process linking cell signaling and control of gene expression, therefore understanding how it controls the transcription factor functions is one of the challenges of functional genomics. We performed such analysis for the forkhead transcription factor FOXC2 mutated in human hereditary disease lymphedemadistichiasis and important for the development of venous and lymphatic valves and lymphatic collecting vessels. We found that FOXC2 is phosphorylated in a cell-cycle dependent manner on eight evolutionary conserved serine/threonine residues, seven of which are clustered within a 70 amino acid domain. Surprisingly, the mutation of phosphorylation sites or a complete deletion of the domain did not affect the transcriptional activity of FOXC2 in a synthetic reporter assay. However, overexpression of the wild type or phosphorylation-deficient mutant resulted in overlapping but distinct gene expression profiles suggesting that binding of FOXC2 to individual sites under physiological conditions is affected by phosphorylation. To gain a direct insight into the role of FOXC2 phosphorylation, we performed comparative genome-wide location analysis (ChIP-chip) of wild type and phosphorylation-deficient FOXC2 in primary lymphatic endothelial cells. The effect of loss of phosphorylation on FOXC2 binding to genomic sites ranged from no effect to nearly complete inhibition of binding, suggesting a mechanism for how FOXC2 transcriptional program can be differentially regulated depending on FOXC2 phosphorylation status. Based on these results, we propose an extension to the enhanceosome model, where a network of genomic context-dependent DNA-protein and protein-protein interactions not only distinguishes a functional site from a nonphysiological site, but also determines whether binding to the functional site can be regulated by phosphorylation. Moreover, our results indicate that FOXC2 may have different roles in quiescent versus proliferating lymphatic endothelial cells in vivo.
Resumo:
Sequencing of a fragment of Helicobacter pylori genome led to the identification of two open reading frames showing striking homology with Coenzyme A (CoA) transferases, enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The genes were present in all H. pylori strains tested by polymerase chain reaction or slot blotting but not in Campylobacter jejuni. Genes for the putative A and B subunits of H. pylori CoA-transferase were introduced into the bacterial expression vector pKK223-3 and expressed in Escherichia coli JM105 cells. Amino acid sequence comparisons, combined with measurements of enzyme activities using different CoA donors and acceptors, identified the H. pylori CoA-transferase as a succinyl CoA:acetoacetate CoA-transferase. This activity was consistently observed in different H. pylori strains. Antibodies raised against either recombinant A or B subunits recognized two distinct subunits of Mr approximately 26,000 and 24, 000 that are both necessary for H. pylori CoA-transferase function. The lack of alpha-ketoglutarate dehydrogenase and of succinyl CoA synthetase activities indicates that the generation of succinyl CoA is not mediated by the tricarboxylic acid cycle in H. pylori. We postulate the existence of an alternative pathway where the CoA-transferase is essential for energy metabolism.
Resumo:
Erythrocyte concentrates (ECs) are the major labile blood product being transfused worldwide, aiming at curing anemia of diverse origins. In Switzerland, ECs are stored at 4 °C up to 42 days in saline-adenine-glucose-mannitol (SAGM). Such storage induces cellular lesions, altering red blood cells (RBCs) metabolism, protein content and rheological properties. A hot debate exists regarding the impact of the storage lesions, thus the age of ECs on transfusion-related clinical adverse outcomes. Several studies tend to show that poorer outcomes occur in patients receiving older blood products. However, no clear association was demonstrated up to date. While metabolism and early rheological changes are reversible through transfusion of the blood units, oxidized proteins cannot be repaired, and it is likely such irreversible damages would affect the quality of the blood product and the efficiency of the transfusion. In vivo, RBCs are constantly exposed to oxygen fluxes, and are thus well equipped to deal with oxidative challenges. Moreover, functional 20S proteasome complexes allow for recognition and proteolysis of fairly oxidized protein, and some proteins can be eliminated from RBCs by the release of microvesicles. The present PhD thesis is involved in a global research project which goal is to characterize the effect of processing and storage on the quality of ECs. Assessing protein oxidative damages during RBC storage is of major importance to understand the mechanisms of aging of stored RBCs. To this purpose, redox proteomic-based investigations were conducted here. In a first part, cysteine oxidation and protein carbonylation were addressed via 2D-DIGE and derivatization-driven immunodetection approaches, respectively. Then, the oxidized sub- proteomes were characterized through LC-MS/MS identification of proteins in spots of interest (cysteine oxidation) or affinity-purified carbonylated proteins. Gene ontology annotation allowed classifying targets of oxidation according to their molecular functions. In a third part, the P20S activity was evaluated throughout the storage period of ECs, and its susceptibility to highly oxidized environment was investigated. The potential defensive role of microvesiculation was also addressed through the quantification of eliminated carbonylated proteins. We highlighted distinct protein groups differentially affected by cysteine oxidation, either reversibly or irreversibly. In addition, soluble extracts showed a decrease in carbonylation at the beginning of the storage and membrane extracts revealed increasing carbonylation after 4 weeks of storage. Engaged molecular functions revealed that antioxidant (AO) are rather reversibly oxidized at their cysteine residue(s), but are irreversibly oxidized through carbonylation. In the meantime, the 20S proteasome activity is decreased by around 40 % at the end of the storage period. Incubation of fresh RBCs extracts with exogenous oxidized proteins showed a dose-dependent and protein-dependent inhibitory effect. Finally, we proved that the release of microvesicles allows the elimination of increasing quantities of carbonylated proteins. Taken together, these results revealed an oxidative pathway model of RBCs storage, on which further investigation towards improved storage conditions will be based. -- Les concentrés érythrocytaires (CE) sont le produit sanguin le plus délivré au monde, permettant de traiter différentes formes d'anémies. En Suisse, les CE sont stocké à 4 °C pendant 42 jours dans une solution saline d'adénine, glucose et mannitol (SAGM). Une telle conservation induit des lésions de stockage qui altèrent le métabolisme, les protéines et les propriétés rhéologique du globule rouge (GR). Un débat important concerne l'impact du temps de stockage des CE sur les risques de réaction transfusionnelles, certaines études tentant de démontrer que des transfusions de sang vieux réduiraient l'espérance de vie des patients. Cependant, aucune association concrète n'a été prouvée à ce jour. Alors que les modifications du métabolisme et changement précoces des propriétés rhéologiques sont réversibles suite à la transfusion du CE, les protéines oxydées ne peuvent être réparées, et il est probable que de telles lésions affectent la qualité et l'efficacité des produits sanguins. In vivo, les GR sont constamment exposés à l'oxygène, et sont donc bien équipés pour résister aux lésions oxydatives. De plus, les complexes fonctionnels de proteasome 20S reconnaissent et dégradent les protéines modérément oxydées, et certaines protéines peuvent être éliminées par les microparticules. Cette thèse de doctorat est imbriquée dans un projet de recherche global ayant pour objectif la caractérisation des effets de la préparation et du stockage sur la qualité des GR. Evaluer les dommages oxydatifs du GR pendant le stockage est primordial pour comprendre les mécanismes de vieillissement des produits sanguin. Dans ce but, des recherches orientées redoxomique ont été conduites. Dans une première partie, l'oxydation des cystéines et la carbonylation des protéines sont évaluées par électrophorèse bidimensionnelle différentielle et par immunodétection de protéines dérivatisées. Ensuite, les protéines d'intérêt ainsi que les protéines carbonylées, purifiées par affinité, sont identifiées par spectrométrie de masse en tandem. Les protéines cibles de l'oxydation sont classées selon leur fonction moléculaire. Dans une troisième partie, l'activité protéolytique du protéasome 20S est suivie durant la période de stockage. L'impact du stress oxydant sur cette activité a été évalué en utilisant des protéines exogènes oxydées in vitro. Le potentiel rôle défensif de la microvesiculation a également été étudié par la quantification des protéines carbonylées éliminées. Dans ce travail, nous avons observé que différents groupes de protéines sont affectés par l'oxydation réversible ou irréversible de leurs cystéines. De plus, une diminution de la carbonylation en début de stockage dans les extraits solubles et une augmentation de la carbonylation après 4 semaines dans les extraits membranaires ont été montrées. Les fonctions moléculaires engagées par les protéines altérées montrent que les défenses antioxydantes sont oxydées de façon réversible sur leurs résidus cystéines, mais sont également irréversiblement carbonylées. Pendant ce temps, l'activité protéolytique du protéasome 20S décroit de 40 % en fin de stockage. L'incubation d'extraits de GR en début de stockage avec des protéines oxydées exogènes montre un effet inhibiteur « dose-dépendant » et « protéine-dépendant ». Enfin, les microvésicules s'avèrent éliminer des quantités croissantes de protéines carbonylées. La synthèse de ces résultats permet de modéliser une voie oxydative du stockage des GRs, à partir de laquelle de futures recherches seront menées avec pour but l'amélioration des conditions de stockage.
Resumo:
To control introduced exotic species that have predominantly genetic, but environmentally reversible, sex determination (e.g. many species of fish), Gutierrez and Teem recently modeled the use of carriers of Trojan Y chromosomes--individuals who are phenotypically sex reversed from their genotype. Repeated introduction of YY females into wild populations should produce extreme male-biased sex ratios and eventual elimination of XX females, thus leading to population extinction. Analogous dynamics are expected in systems in which sex determination is influenced by one or a few major genes on autosomes.
Resumo:
Summary : The chemokines CCL19 and CCL21 and their common receptor CCR7 attract antigenpresenting dendritic cells (DCs) and naive T cells into the T zone of secondary lymphoid organs (SLO) and are therefore critically involved in homeostatic T cell recirculation and the initiation of adaptive immune responses. In addition. CCR7 ligands were proposed to mediate T cell exit from neonatal thymus, allowing colonization of T zones in SLOB. The relative contribution of CCL19 and CCL21 to these processes has remained unclear, as they were studied in mouse models lacking either CCR7 or both ligands. The aim of my thesis was to characterize Cc119-' mice and thereby investigate the relative roles of the two CCR7 ligands in development, homeostasis and immune response. The first study addressed the role of CCR7 ligands in DC biology. We found that CCL19 is dispensable for DC migration to lymph nodes and their localization to T zones. Furthermore, a CCL19-deficient environment did not lead to a defect in DC maturation or T cell priming. Therefore, CCL21 is sufficient to mediate CCR7-dependent processes during the initiation of adaptive immune responses. In the second study we investigated how the two CCR7 ligands affect CCR7 expression and function on naive T cells. We found that in SLOB CCR7 is constantly occupied with CCL19 and CCL21, eventually leading to its internalization. The reduced level of free CCR7 on these cells led to diminished ligand sensitivity and consequently impaired chemotactic responses. This effect was reversible by passage through aCCR7 ligand-free environment like the blood circulation. We propose that the different states of ligand sensitivity in SLOB and blood are important to allow for proper T cell recirculation. In the third study the role of CCL19 in neonatal thymus and spleen was analyzed. While neonatal Cc119-!- mice had no defect in thymic egress, we observed reduced T cell accumulation in the spleen but not lymph nodes. We identified reticular stromal cells in the developing white pulp (WP) as the major CCL 19 source. The development of these WP stromal cells as well as their CCL19 expression were dependent on LTalß2+ B cells. In conclusion, we have found that CCL21 can mostly compensate for lack of CCL19 in homeostasis and immunity. In contrast, during development. CCL19 has anon-redundant function for T cell colonization of the spleen.