627 resultados para REGULARITY LEMMA
Resumo:
In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the inference problem is the posterior distribution of this parameter. A regular version of the posterior distribution in functional spaces is characterized. However, the infinite dimension of the considered spaces causes a problem of non continuity of the solution and then a problem of inconsistency, from a frequentist point of view, of the posterior distribution (i.e. problem of ill-posedness). The contribution of this essay is to propose new methods to deal with this problem of ill-posedness. The first one consists in adopting a Tikhonov regularization scheme in the construction of the posterior distribution so that I end up with a new object that I call regularized posterior distribution and that I guess it is solution of the inverse problem. The second approach consists in specifying a prior distribution on the parameter of interest of the g-prior type. Then, I detect a class of models for which the prior distribution is able to correct for the ill-posedness also in infinite dimensional problems. I study asymptotic properties of these proposed solutions and I prove that, under some regularity condition satisfied by the true value of the parameter of interest, they are consistent in a "frequentist" sense. Once I have set the general theory, I apply my bayesian nonparametric methodology to different estimation problems. First, I apply this estimator to deconvolution and to hazard rate, density and regression estimation. Then, I consider the estimation of an Instrumental Regression that is useful in micro-econometrics when we have to deal with problems of endogeneity. Finally, I develop an application in finance: I get the bayesian estimator for the equilibrium asset pricing functional by using the Euler equation defined in the Lucas'(1978) tree-type models.
Resumo:
The research performed during the PhD and presented in this thesis, allowed to make judgments on pushover analysis method about its application in evaluating the correct structural seismic response. In this sense, the extensive critical review of existing pushover procedures (illustrated in chapter 1) outlined their major issues related to assumptions and to hypothesis made in the application of the method. Therefore, with the purpose of evaluate the effectiveness of pushover procedures, a wide numerical investigation have been performed. In particular the attention has been focused on the structural irregularity on elevation, on the choice of the load vector and on its updating criteria. In the study eight pushover procedures have been considered, of which four are conventional type, one is multi-modal, and three are adaptive. The evaluation of their effectiveness in the identification of the correct dynamic structural response, has been done by performing several dynamic and static non-linear analysis on eight RC frames, characterized by different proprieties in terms of regularity in elevation. The comparisons of static and dynamic results have then permitted to evaluate the examined pushover procedures and to identify the expected margin of error by using each of them. Both on base shear-top displacement curves and on considered storey parameters, the best agreement with the dynamic response has been noticed on Multi-Modal Pushover procedure. Therefore the attention has been focused on Displacement-based Adative Pushover, coming to define for it an improvement strategy, and on modal combination rules, advancing an innovative method based on a quadratic combination of the modal shapes (QMC). This latter has been implemented in a conventional pushover procedure, whose results have been compared with those obtained by other multi-modal procedures. The development of research on pushover analysis is very important because the objective is to come to the definition of a simple, effective and reliable analysis method, indispensable tool in the seismic evaluation of new or existing structures.
Resumo:
The aim of this work is to carry out an applicative, comparative and exhaustive study between several entropy based indicators of independence and correlation. We considered some indicators characterized by a wide and consolidate literature, like mutual information, joint entropy, relative entropy or Kullback Leibler distance, and others, more recently introduced, like Granger, Maasoumi and racine entropy, also called Sρ, or utilized in more restricted domains, like Pincus approximate entropy or ApEn. We studied the behaviour of such indicators applying them to binary series. The series was designed to simulate a wide range of situations in order to characterize indicators limit and capability and to identify, case by case, the more useful and trustworthy ones. Our target was not only to study if such indicators were able to discriminate between dependence and independence because, especially for mutual information and Granger, Maasoumi and Racine, that was already demonstrated and reported in literature, but also to verify if and how they were able to provide information about structure, complexity and disorder of the series they were applied to. Special attention was paid on Pincus approximate entropy, that is said by the author to be able to provide information regarding the level of randomness, regularity and complexity of a series. By means of a focused and extensive research, we furthermore tried to clear the meaning of ApEn applied to a couple of different series. In such situation the indicator is named in literature as cross-ApEn. The cross-ApEn meaning and the interpretation of its results is often not simple nor univocal and the matter is scarcely delved into by literature, thereby users can easily leaded up to a misleading conclusion, especially if the indicator is employed, as often unfortunately it happens, in uncritical manner. In order to plug some cross-ApEn gaps and limits clearly brought out during the experimentation, we developed and applied to the already considered cases a further indicator we called “correspondence index”. The correspondence index is perfectly integrated into the cross-ApEn computational algorithm and it is able to provide, at least for binary data, accurate information about the intensity and the direction of an eventual correlation, even not linear, existing between two different series allowing, in the meanwhile, to detect an eventual condition of independence between the series themselves.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
In dieser Arbeit geht es um die Schätzung von Parametern in zeitdiskreten ergodischen Markov-Prozessen im allgemeinen und im CIR-Modell im besonderen. Beim CIR-Modell handelt es sich um eine stochastische Differentialgleichung, die von Cox, Ingersoll und Ross (1985) zur Beschreibung der Dynamik von Zinsraten vorgeschlagen wurde. Problemstellung ist die Schätzung der Parameter des Drift- und des Diffusionskoeffizienten aufgrund von äquidistanten diskreten Beobachtungen des CIR-Prozesses. Nach einer kurzen Einführung in das CIR-Modell verwenden wir die insbesondere von Bibby und Sørensen untersuchte Methode der Martingal-Schätzfunktionen und -Schätzgleichungen, um das Problem der Parameterschätzung in ergodischen Markov-Prozessen zunächst ganz allgemein zu untersuchen. Im Anschluss an Untersuchungen von Sørensen (1999) werden hinreichende Bedingungen (im Sinne von Regularitätsvoraussetzungen an die Schätzfunktion) für die Existenz, starke Konsistenz und asymptotische Normalität von Lösungen einer Martingal-Schätzgleichung angegeben. Angewandt auf den Spezialfall der Likelihood-Schätzung stellen diese Bedingungen zugleich lokal-asymptotische Normalität des Modells sicher. Ferner wird ein einfaches Kriterium für Godambe-Heyde-Optimalität von Schätzfunktionen angegeben und skizziert, wie dies in wichtigen Spezialfällen zur expliziten Konstruktion optimaler Schätzfunktionen verwendet werden kann. Die allgemeinen Resultate werden anschließend auf das diskretisierte CIR-Modell angewendet. Wir analysieren einige von Overbeck und Rydén (1997) vorgeschlagene Schätzer für den Drift- und den Diffusionskoeffizienten, welche als Lösungen quadratischer Martingal-Schätzfunktionen definiert sind, und berechnen das optimale Element in dieser Klasse. Abschließend verallgemeinern wir Ergebnisse von Overbeck und Rydén (1997), indem wir die Existenz einer stark konsistenten und asymptotisch normalen Lösung der Likelihood-Gleichung zeigen und lokal-asymptotische Normalität für das CIR-Modell ohne Einschränkungen an den Parameterraum beweisen.
Resumo:
My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.
Resumo:
In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.
Resumo:
Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect these interfaces from thermal measurements on the surface of the body. We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvability based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the inclusions, we develop an adaptation of the factorization method to this time-dependent problem. In particular this shows that the locations of the interfaces are uniquely determined by boundary measurements. The method also yields to a numerical algorithm to recover the inclusions and thus the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling of a finite element method with a boundary element method, and finally we present some numerical results for the inverse problem.
Resumo:
The present dissertation focuses on the dual number in Ancient Greek in a diachronical lapse stretching from the Mycenaean age to the Attic Drama and Comedy of the 5th century BC. In the first chapter morphological issues are addressed, chiefly in a comparative perspective. The Indo European evidence on the dual is hence gathered in order to sketch patterns of grammaticalisation and paradigmatisation of specific grams, growing increasingly functional within the Greek domain. In the second chapter syntactical problems are tackled. After a survey of scholarly literature on the Greek dual, we engage in a functional and typological approach, in order to disentangle some biased assessments on the dual, namely its alleged lack of regularity and intermittent agreement. Some recent frameworks in General Linguistics provide useful grounds for casting new light on the subject. Internal Reconstruction, for instance, supports the facultativity of the dual in each and every stage of its development; Typology and the Animacy Hierarcy add precious cross linguistical insight on the behaviour of the dual toward agreement. Glaring differences also arise as to the adoption — or avoidance — of the dual by different authors. Idiolectal varieties prove in fact conditioned by stylistical and register necessity. By means of a comparison among Epics, Tragedy and Comedy it is possible to enhance differences in the evaluation of the dual, which led sometimes to forms of ‘censure’ — thus triggering the onset of competing strategies to express duality. The last two chapters delve into the tantalising variety of the Homeric evidence, first of all in an account of the notorious issue of the Embassy of Iliad IX, and last in a commentary of all significant Homeric duals — mostly represented by archaisms, formulae, and ad hoc coinages.
Resumo:
Compliance lebertransplantierter Patienten mit der immunsuppressiven Therapie ist unerlässlich für den lang-fristigen Erfolg der Lebertransplantation. Aus Non-Compliance mit der immunsuppressiven Therapie können Abstoßungsreaktionen, Organverlust oder sogar Tod resultieren. Hauptziel der vorliegenden Studie war die erstmalige Evaluation der Compliance bei Einnahme von Prograf® (zweimal tägliche Einnahme von Tacrolimus) im Vergleich zur Einnahme von Advagraf® (einmal tägliche Einnahme von Tacrolimus). Von Interesse war außerdem die Fragestellung, ob sich die Compliance bezüglich der immunsuppressiven Therapie mit dem Zeitabstand zur Transplantation verändert. rnDie Compliancemessung wurde offen mittels MEMS® (Aardex Ltd., Schweiz) durchgeführt, der Patient war also über die Compliancekontrolle informiert. Mittels MEMS® konnten Datum und Uhrzeit der Dosisentnahme dokumentiert und damit zuverlässig das gesamte Compliancemuster über im Durchschnitt 176 Tage mit der zweimal täglichen Einnahme und 188 Tage mit der einmal täglichen Einnahme pro Patient erfasst werden. 65 Patienten mit dem Basisimmunsuppressivum Prograf® wurden in die prospektive, nicht-interventionelle Studie eingeschlossen und nach Per Protokoll-Analyse konnten die Daten von 63 in Mainz lebertransplantierten Patienten ausgewertet werden (Prograf®: Gruppe 1: 15 Patienten (Pat.), Gruppe 2: 23 Pat., Gruppe 3: 22 Pat., Drop-outs: 3 Pat.; Advagraf®: Gruppe 1: 16 Pat., Gruppe 2: 23 Pat., Gruppe 3: 23 Pat., Drop-outs: 1 Pat.). Die Dosing Compliance (DC), definiert als Prozent der Tage, an denen der MEMS®-Behälter korrekt geöffnet und die Dosis höchstwahrscheinlich korrekt eingenommen wurde, war der primäre Zielparameter. Weitere Methoden der Compliancemessung, wie der Pill Count, mehrere Fragebögen (Selbsteinschätzung, Patientenwissen-, Morisky-, MESI-, HADS-, SF-36- und Patientenzufriedenheit-Fragebogen) sowie die Blutspiegelmessung wurden eingesetzt, um die Compliance der Patienten umfassend charakterisieren zu können. rnDer Median der DC mit der zweimal täglichen Einnahme betrug 97% bei Pat. > 6 m.p.t. < 2 y.p.t., 97% bei Pat. > 2 y.p.t. < 5 y.p.t. und 98% bei Pat. > 5 y.p.t. (p=0,931; Kruskal-Wallis-Test). Der Median der DC von Tacroli-mus bei einmal täglicher Einnahme (Advagraf®) betrug 99% bei Pat. > 6 m.p.t. < 2 y.p.t., 98% bei Pat. > 2 y.p.t. < 5 y.p.t. und 97% bei Pat. > 5 y.p.t. (p=0,158; Kruskal-Wallis-Test). Insgesamt zeigten die Patienten während des gesamten Beobachtungszeitraums von 12 Monaten eine gute Compliance für die Einnahme ihres Immun-suppressivums. Die Timing Compliance (TiC)-raten lagen auf einem niedrigeren Niveau als die Dosing- und Taking Compliance (TC)-raten. Die Complianceraten der drei Subgruppen unterschieden sich nicht signifikant. Die Patienten mit dem geringsten Abstand zur Transplantation zeigten bei beinahe allen Messmethoden die höchste Compliance im Gegensatz zur etwas geringeren Compliance der Patienten mit größerem Abstand zur Transplantation. Die während der Advagraf®-Phase mittels MEMS® gemessenen DC-, TC- und TiC-raten fielen höher aus als bei Einnahme von Prograf® (p(DC)=0,003; p(TC)=0,077; p(TiC)=0,003; Wilcoxon Vorzeichen-Rang-Test). Dieses Ergebnis untermauert die in anderen Indikationen gefundene Complianceverbesserung durch die einmal tägliche Arzneimittelgabe im Vergleich zur zweimal täglichen Gabe. Die Auswertung der Drug Holidays ergab für die Advagraf®-Phase hingegen niedrigere Complianceraten als für die Prograf®-Phase. Dieses Ergebnis ist auf die Definition des Drug Holidays (keine Arzneimitteleinnahme über 48 h) zurück zu führen. Die Chance Advagraf® einmal pro Tag zu vergessen ist doppelt so hoch, als Prograf® dreimal aufeinander fol-gend zu vergessen. Mit einer verhältnismäßigeren Definition von Drug Holidays (Einnahmepause von 72 Stun-den bei einmal täglicher Einnahme von Advagraf® entsprechend drei ausgelassenen Dosen von Prograf®) ist die Compliancerate 81%. Die Ergebnisse des Pill Counts waren sowohl bei Einnahme von Prograf® als auch von Advagraf® mit der jeweils gemessenen TC vergleichbar, was die Zuverlässigkeit der Messergebnisse bes-tätigt. rnDie zusätzlich eingesetzten Methoden verifizierten das Ergebnis der höheren Compliance mit der einmal tägli-chen Einnahme. Die während der Advagraf®-Phase beantworteten Fragebögen zeigten einen Trend zu besserer Compliance und Lebensqualität. Lediglich die Ergebnisse des MESI-Fragebogens und der Blutspiegelmessungen wichen sowohl während der Prograf®- als auch während der Advagraf®-Phase stark von den Ergebnis-sen der anderen Methoden ab. rnUnter Einbeziehung aller mittels MEMS® und Pill Count objektiv gemessenen Complianceparameter konnten während der Prograf®-Einnahme 54 von 60 Pat. (90%) und während der Advagraf®-Phase 59 von 62 Pat. (95%) als compliant eingestuft werden. Aufgrund subjektiver Compliancemessungen waren 49 von 58 Pat. (84%) während der Prograf®- und 54 von 59 Pat. (92%) während der Advagraf®-Phase als compliant einzustufen. Es wurde beobachtet, dass die zeitlich korrekte Einnahme der Morgendosis einfacher und bei Einmalgabe zu bevorzugen ist. Die wochentagsbezogene Auswertung ergab erwartungsgemäß, dass am Wochenende (Samstag und Sonntag) am häufigsten Dosen ausgelassen wurden. rnDie Umstellung von Prograf® auf Advagraf® stellte kein Problem dar. Beinahe alle Patienten waren dankbar und zufrieden mit der Reduzierung der Dosierungsfrequenz und der größeren Unabhängigkeit durch die entfallene abendliche Einnahme. Der positive Einfluss der geringeren Dosierungshäufigkeit auf die Langzeitcompliance der Patienten, ist ein hinreichender Grund die Entwicklung von Formulierungen zur einmal täglichen Ein-nahme für weitere Immunsuppressiva zu fordern. Insbesondere bei den häufig eingesetzten Kombinationstherapien von Immunsuppressiva würde der Effekt der Complianceverbesserung noch verstärkt werden, wenn alle eingesetzten Immunsuppressiva zur einmal täglichen Gabe geeignet wären.
Resumo:
In questo lavoro si presenta il fenomeno fisico nominato moto browniano, s’illustra il modello matematico atto a descriverlo e si analizza come questo abbia avuto notevole importanza in ambito finanziario, in particolare nell’elaborazione del modello di Black, Scholes e Merton per la valutazione dei derivati.
Resumo:
Presentazione dei risultati più importanti e famosi che riguardano la congettura di Collatz. Analisi empiriche e nuovi risultati riguardanti la congettura e le sue generalizzazioni.
Resumo:
In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.