989 resultados para REDUCING BACTERIA
Resumo:
Prawn trawling occurs in most states of Australia in tropical, subtropical, and temperate waters. Bycatch occurs to some degree in all Australian trawl fisheries, and there is pressure to reduce the levels of trawl fishery bycatch. This paper gives a brief overview of the bycatch issues and technological solutions that have been evaluated or adopted in Australian prawn-trawl fi sheries. Turtle excluder devices (TED’s) and bycatch reduction devices (BRD’s) are the principal solutions to bycatch in Australian prawn-trawl fisheries. This paper focuses on a major prawn-trawl fishery of northeastern Australia, and the results of commercial use of TED’s and BRD’s in the Queensland east coast trawl fishery are presented. New industry designs are described, and the status of TED and BRD adoption and regulation is summarized. The implementation of technological solutions to reduce fishery bycatch is assumed generally to assist prawn-trawl fisheries within Australia in achieving legislative requirements for minimal environmental impact and ecological sustainable development.
Resumo:
O processo de lodos ativados consiste em um tratamento biológico amplamente utilizado nas estações de tratamento, para remoção de matéria orgânica, devido à qualidade do efluente ao final do processo. Essa remoção é realizada por microrganismos que atuam neste sistema como bactérias, protozoários, metazoários e organismos filamentosos, como fungos e bactérias, formadores de flocos biológicos. Para garantir a eficiência deste processo deve haver um equilíbrio da microbiota dentro do reator aeróbio e o controle do número de filamentosos, tendo em vista que seu excesso no sistema pode causar o intumescimento do lodo (bulking) interferindo na qualidade do efluente gerado. O presente estudo teve como objetivo testar a eficiência de uma solução de 0,001% de peróxido de hidrogênio (H2O2) no controle de microrganismos filamentosos em lodos provenientes de duas indústrias, farmacêutica e alimentícia, reduzindo assim os riscos relacionados à utilização desta substância em grandes volumes. Foram realizadas análises microscópicas do lodo para avaliação quantitativa e monitoramento da atividade biológica dos reatores, essa avaliação serviu como base para a análise qualitativa a partir do índice de Madoni (1994) gerando um Índice Biótico do Lodo (IBL). Foram realizados outros testes, como IVL e teste de respiração, sendo os resultados destes testes comparados a fim de avaliar a eficiência da solução de H2O2 e sua interferência no processo. A solução de H2O2 foi eficiente em ambos os experimentos, mostrando através dos testes de TCO e TCOe não haver interferência desta solução no metabolismo da microfauna; os resultados do IBL mostraram uma boa qualidade do lodo para ambos experimentos e a partir desta análise foi observado que a elevação de temperatura, acima de 30,0C, causa interferência no sistema levando a uma redução do IBL. Os resultados de IVL não demonstraram diferença entre os valores dos reatores controle e tratado, porém a avaliação do tamanho dos flocos e filamentos mostrou que o aumento na concentração da solução de H2O2 levou a um controle na quantidade de filamentosos nos reatores tratados que reduziram em tamanho e quantidade.
Reducing bottlenecks in the CAD-to-mesh-to-solution cycle time to allow CFD to participate in design
Resumo:
Concern over the global energy system, whether driven by climate change, national security, or fears of shortage, is being discussed widely and in every arena but with a bias toward energy supply options. While demand reduction is often mentioned in passing, it is rarely a priority for implementation, whether through policy or through the search for innovation. This paper aims to draw attention to the opportunity for major reduction in energy demand, by presenting an analysis of how much of current global energy demand could be avoided. Previous work led to a "map" of global energy use that traces the flow of energy from primary sources (fuels or renewable sources), through fuel refinery, electricity generation, and end-use conversion devices, to passive systems and the delivery of final energy services (transport, illumination, and sustenance). The key passive systems are presented here and analyzed through simple engineering models with scalar equations using data based on current global practice. Physically credible options for change to key design parameters are identified and used to predict the energy savings possible for each system. The result demonstrates that 73% of global energy use could be saved by practically achievable design changes to passive systems. This reduction could be increased by further efficiency improvements in conversion devices. A list of the solutions required to achieve these savings is provided.
Resumo:
Thirty-six years ago, NOAA’s National Marine Fisheries Service began research on how to reduce mortality of sea turtles, Chelonioidea, in shrimp trawls. As a result of efforts of NMFS and many stakeholders, including domestic and foreign fishermen, environmentalists, Sea Grant agents, and government agencies, many trawl fisheries around the world use a version of the turtle excluder device (TED). This article chronicles the contributions of NMFS to this effort, much of which occurred at the NMFS Mississippi Laboratories in Pascagoula. Specifically, it summarizes the impetus for and results of major developments and little known events in the TED research and discusses how these influenced the course of subsequent research.
Resumo:
The near-surface motility of bacteria is important in the initial formation of biofilms and in many biomedical applications. The swimming motion of Escherichia coli near a solid surface is investigated both numerically and experimentally. A boundary element method is used to predict the hydrodynamic entrapment of E. coli bacteria, their trajectories, and the minimum separation of the cell from the surface. The numerical results show the existence of a stable swimming distance from the boundary that depends only on the shape of the cell body and the flagellum. The experimental validation of the numerical approach allows one to use the numerical method as a predictive tool to estimate with reasonable accuracy the near-wall motility of swimming bacteria of known geometry. The analysis of the numerical database demonstrated the existence of a correlation between the radius of curvature of the near-wall circular trajectory and the separation gap. Such correlation allows an indirect estimation of either of the two quantities by a direct measure of the other without prior knowledge of the cell geometry. This result may prove extremely important in those biomedical and technical applications in which the near-wall behavior of bacteria is of fundamental importance.
Resumo:
In this report we analyze the Topic 5 report’s recommendations for reducing nitrogen losses to the Gulf of Mexico (Mitsch et al. 1999). We indicate the relative costs and cost-effectiveness of different control measures, and potential benefits within the Mississippi River Basin. For major nonpoint sources, such as agriculture, we examine both national and basin costs and benefits. Based on the Topic 2 economic analysis (Diaz and Solow 1999), the direct measurable dollar benefits to Gulf fisheries of reducing nitrogen loads from the Mississippi River Basin are very limited at best. Although restoring the ecological communities in the Gulf may be significant over the long term, we do not currently have information available to estimate the benefits of such measures to restore the Gulf’s long-term health. For these reasons, we assume that measures to reduce nitrogen losses to the Gulf will ultimately prove beneficial, and we concentrate on analyzing the cost-effectiveness of alternative reduction strategies. We recognize that important public decisions are seldom made on the basis of strict benefit–cost analysis, especially when complete benefits cannot be estimated. We look at different approaches and different levels of these approaches to identify those that are cost-effective and those that have limited undesirable secondary effects, such as reduced exports, which may result in lost market share. We concentrate on the measures highlighted in the Topic 5 report, and also are guided by the source identification information in the Topic 3 report (Goolsby et al. 1999). Nonpoint sources that are responsible for the bulk of the nitrogen receive most of our attention. We consider restrictions on nitrogen fertilizer levels, and restoration of wetlands and riparian buffers for denitrification. We also examine giving more emphasis to nitrogen control in regions contributing a greater share of the nitrogen load.
Resumo:
The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.