995 resultados para Quantum Interference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a quantum random walk algorithm, based on the Dirac operator instead of the Laplacian. The algorithm explores multiple evolutionary branches by superposition of states, and does not require the coin toss instruction of classical randomised algorithms. We use this algorithm to search for a marked vertex on a hypercubic lattice in arbitrary dimensions. Our numerical and analytical results match the scaling behaviour of earlier algorithms that use a coin toss instruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the degrees of freedom (DOF) for a K user multiple-input multiple-output (MIMO) M x N interference channel using interference alignment (IA). A new performance metric for evaluating the efficacy of IA algorithms is proposed, which measures the extent to which the desired signal dimensionality is preserved after zero-forcing the interference at the receiver. Inspired by the metric, two algorithms are proposed for designing the linear precoders and receive filters for IA in the constant MIMO interference channel with a finite number of symbol extensions. The first algorithm uses an eigenbeamforming method to align sub-streams of the interference to reduce the dimensionality of the interference at all the receivers. The second algorithm is iterative, and is based on minimizing the interference leakage power while preserving the dimensionality of the desired signal space at the intended receivers. The improved performance of the algorithms is illustrated by comparing them with existing algorithms for IA using Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, were given by Guo and Xia along with sufficient conditions for a Space-Time Block Code (STBC) to achieve full diversity with PIC/PIC-SIC decoding for point-to-point MIMO channels. In Part-I of this two part series of papers, we give new conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. We then show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks and give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders. In Part-II, we construct new low complexity full-diversity PIC/PIC-SIC decodable STBCs and DSTBCs that achieve higher rates than the known full-diversity low complexity ML decodable STBCs and DSTBCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this second part of a two part series of papers, we construct a new class of Space-Time Block Codes (STBCs) for point-to-point MIMO channel and Distributed STBCs (DSTBCs) for the amplify-and-forward relay channel that give full-diversity with Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC) decoders. The proposed class of STBCs include most of the known full-diversity low complexity PIC/PIC-SIC decodable STBCs as special cases. We also show that a number of known full-diversity PIC/PIC-SIC decodable STBCs that were constructed for the point-topoint MIMO channel can be used as full-diversity PIC/PIC-SIC decodable DSTBCs in relay networks. For the same decoding complexity, the proposed STBCs and DSTBCs achieve higher rates than the known low decoding complexity codes. Simulation results show that the new codes have a better bit error rate performance than the low ML decoding complexity codes available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past studies of memory interference in multiprocessor systems have generally assumed that the references of each processor are uniformly distributed among the memory modules. In this paper we develop a model with local referencing, which reflects more closely the behavior of real-life programs. This model is analyzed using Markov chain techniques and expressions are derived for the multiprocessor performance. New expressions are also obtained for the performance in the traditional uniform reference model and are compared with other expressions-available in the literature. Results of a simulation study are given to show the accuracy of the expressions for both models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper bounds on the probability of error due to co-channel interference are proposed in this correspondence. The bounds are easy to compute and can be fairly tight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on our study of the edge of the 2/5 fractional quantum Hall state, which is more complicated than the edge of the 1/3 state because of the presence of edge sectors corresponding to different partitions of composite fermions in the lowest two Lambda levels. The addition of an electron at the edge is a nonperturbative process and it is not a priori obvious in what manner the added electron distributes itself over these sectors. We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in the [N(1), N(2)] sector, where N(1) and N(2) are the numbers of composite fermions in the lowest two Lambda levels, the resulting state lies in either [N(1) + 1, N(2)] or [N(1), N(2) + 1] sectors; adding an electron at the edge is thus equivalent to adding a composite fermion at the edge. The coupling to other sectors of the form [N(1) + 1 + k, N(2) - k], k integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with the two-boson model of the 2/5 edge. We compute the spectral weights and find that while the individual spectral weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the 2/5 edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.