990 resultados para Quantitative sensory test
Resumo:
In this study, 73 South American red wines (Vitis vinifera) from 5 varietals were classified based on sensory quality, retail price and antioxidant activity and characterised in relation to their phenolic composition. ORAC and DPPH assays were assessed to determine the antioxidant activity, and sensory analysis was conducted by seven professional tasters using the Wine Spirits Education Trust`s structured scales. The use of multivariate statistical techniques allowed the identification of wines with the best combination of sensory characteristics, price and antioxidant activity. The most favourable varieties were Malbec, Cabernet Sauvignon, and Syrah produced in Chile and Argentina. Conversely, Pinot Noir wines displayed the lowest sensory characteristics and antioxidant activity. These results suggest that the volatile compounds may be the main substances responsible for differentiating red wines on the basis of sensory evaluation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.
Resumo:
The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on the texture and sensory features of synbiotic guava mousses supplemented with the probiotic, Lactobacillus acidophilus La-5, and the prebiotic fibre oligofructose, were studied. The frozen storage (-18 +/- 1 degrees C), followed by thawing at 4 degrees C before the analyses, and the complete replacement of the milk fat by inulin plus WPC, led to significant differences in the instrumental texture parameters of mousses (P < 0.05). Nonetheless, these changes did not affect the sensory acceptability of the products studied. The frozen storage may be employed to extend the shelf-life of synbiotic guava mousses. Additionally, to obtain a texture profile similar to the traditional product, the simultaneous addition of inulin and WPC is recommended only for the partial replacement of milk fat in refrigerated and frozen mousses, and the total proportion of both ingredients together should not exceed 2.6%. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Pectin can be used as a natural emulsifier in food formulations. In this study, textured soybean protein (TSP), used as an emulsifier in commercial sausages, was partially replaced by a mixture containing pectin and isolated soybean proteins, which were either extruded (EXT) or not extruded (MIX), and the chemical and sensory characteristics of samples were evaluated after 60 days of storage at 4 degrees C. Responses such as oxidation measured by PV and TBARS, hardness, color, pH and sensory characteristics were compared with those of a commercial sausage (CON). The mixture containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins, as emulsifier agent, reduced the hardness (EXT: 21.69 +/- 0.98 and MIX: 20.17 +/- 2.76 N) and the pH (EXT: 5.46 +/- 0.03 and MIX: 5.29 +/- 0.01) of the samples and increased the concentration of peroxides (EXT: 0.10 +/- 0.01 and MIX: 0.15 +/- 0.01 meq/kg) when compared with samples formulated only with TSP (28.57 +/- 2.54 N, pH of 6.92 +/- 0.04 and PV = 0.07 +/- 0.01 meq/kg). These effects were likely caused by the anionic character of the emulsifier. However, no sensory difference was observed between the sausages containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins submitted to the extrusion process (EXT) and the control sausages, suggesting that the formulation proposed in this study can be a potential alternative for the further development of sausages that have functional properties or are free of artificial additives.
Resumo:
The objective of this study was to develop a dessert that contains soy protein (SP) (1%, 2%, 3%) and guava juice (GJ) (22%, 27%, 32%) using Response Surface Methodology (RSM) as the optimisation technique. Water activity, physical stability, colour, acidity, pH, iron, and carotenoid contents were analysed. Affective tests were performed to determine the degree of liking of colour, creaminess, and acceptability. The results showed that GJ increased the values of redness, hue angle, chromaticity, acidity, and carotenoid content, while SP reduced water activity. Optimisation suggested a dessert containing 32% GJ and 1.17% SP as the best proportion of these components. This sample was considered a source of fibres, ascorbic acid, copper, and iron and garnered scores above the level of `slightly liked` for sensory attributes. Moreover, RSM was shown to be an adequate approach for modelling the physicochemical parameters and the degree of liking of creaminess of desserts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of addition of rosemary and oregano extracts on the sensory quality of irradiated beef burger was investigated. Batches of beef burgers were prepared with 400 ppm of rosemary or oregano extract and a group prepared with 200 ppm of synthetic butyl-hydroxytoluene (BHT)/butyl-hydroxy-anisol (BHA) was used as a control. Half of each formulation was irradiated at the maximum dose allowed for frozen meat (7 kGy). Samples were kept under frozen conditions (-20 degrees C) during the whole storage period, including during irradiation. Two analyses were performed after 20 and 90 days to verify the influence of the addition of the different types of antioxidants and the effect of irradiation and storage time on the acceptance of the product. Thirty-three and thirty-four untrained panelists were invited to participate in the first and second test, respectively. A structured hedonic scale ranging from 1 to 9 points was used in both analyses. BHT/BHA formulation obtained the highest score (6.73) and regarding the natural antioxidants, oregano received better acceptance (6.36). Irradiated samples formulated with oregano received a lower score, 6.03 in the first test and 5.06 in the second one, compared to the non-irradiated sample (6.36 and 5.79). In the second test (90 days), the sample formulated with BHT/BHA and which was irradiated received a higher score (6.59) when compared to the non-irradiated one (5.85). In both tests, the irradiated samples formulated with rosemary extract obtained a better score compared to the non-irradiated one, the scores being 5.00-3.82 and 5.00-3.76 in the first and second test, respectively. Our results allowed us to conclude that the natural antioxidants, rosemary and oregano extracts, present a good alternative for replacing synthetic additives in food industries, and that the irradiation process, in some cases, may help to enhance the sensory quality of food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of probiotic cultures on sensory performance of coconut flan during storage at 5 degrees C and the viability of these micro organisms for up to 28 days were investigated. Sensory analyses of the product were performed after 7, 14 and 21 days of storage. Coconut flans were produced with no addition of cultures (T1, control), or supplemented with Bifidobacterium lactis (T2), Lactobacillus paracasei (T3) and B. lactis + L. paracasei (T4). Populations of L. paracasei and B. lactis as single or in co-culture remained above 7 log CFU g(-1) during the entire storage period. Viability of L. paracasei was higher for T3. All products were well accepted and no significant differences (P > 0.05) were detected between the coconut flans studied. The addition of L. paracasei and B. lactis to coconut flan resulted in its having great potential as a functional food, which has high sensory acceptability.
Resumo:
BACKGROUND: The interaction between lipoxygenase-active soybean flour (LOX) and ascorbic acid (AA), on colour, rheological and sensory properties of wheat bread was studied with the aim of reducing the applied quantity of additives in bread formulations. RESULTS: The ascorbic acid (0-500 ppm) and active soybean flour (0-1%) mixture improved bread-crumb colour by lowering the yellow hue in a higher proportion than those expressed by the components alone, characterising a synergistic mechanism ((y) over cap (b) = 15.1- (1.7 x LOX) - (0.5 x AA) - (5.8 x LOX x AA), where : (y) over cap (b) represent the estimated value for the yellow hue parameter). No differences in flavour and porosity were seen between the samples. As supported by the instrumental methods, breads made with active soybean flour and ascorbic acid (LOX + AA) had whiter crumbs and were softer and springier than controls as assessed by a trained sensory panel. In summary, the combination of both active soybean flour and ascorbic acid showed synergism, promoting a greater bleaching effect than when used alone. CONCLUSION: These results suggest the potential use of active soybean flour as a synergistic ingredient in the substitution of artificial additives in bread making. Since the interaction on the bleaching response was not linear and active soybean flour showed a higher iron concentration (66.40 +/- 4.23 mu g g(-1)) than non-active soybean flour (52.30 +/- 0.40 mu g g(-1)), more studies are warranted to establish the biochemical mechanisms involved in this interaction. (c) 2007 Society of Chemical Industry.
Resumo:
The aim of this study was to investigate how beaker size, basket assembly, use of disk, and immersion medium impact the disintegration time of dietary supplements. The disintegration times were determined for five tablet and two capsule products. A two-station disintegration tester was used with Apparatus A or Apparatus B as described in the United States Pharmacopeia (USP) chapters, < 701 > and < 2040 >. Two beakers complying with the harmonized specifications were used, one with a volume of 1,000 mL and one with a 1,500-mL volume. The disintegration data were analyzed using ANOVA for the following factors: beaker size, equipment (App A and B) and condition (with/without disk). Two tablet products were not sensitive to any changes in the test conditions or equipment configurations. One product was only partially sensitive to the test conditions. The other products showed impact on the disintegration time for all test conditions. The results revealed that these tablet products might pass or fail current USP disintegration requirements depending on the equipment configuration. Similar results were obtained for the two investigated capsule formulations. One product might fail current USP disintegration requirements if the large beaker was used, but might pass the disintegration requirements when the small beaker was used. Hydroxy propyl methyl cellulose capsules were mostly influenced if sodium instead of a potassium buffer was used as the immersion medium. The results demonstrate that the current harmonized ICH specifications for the disintegration test are insufficient to make the disintegration test into reliable test for dietary supplements.
Resumo:
Sensory analysis is a precise and descriptive measuring technique to quantify human responses to stimuli. Odor, one of these stimuli, is basically the result of the interaction between a chemical stimulus and the olfactory receptor system, which can be described using a number of different dimensions and measures through different sensory tests: threshold, intensity and quality. To measure fragrance performance on the skin, these parameters are very important, but the main attribute to be evaluated is substantivity, thus the importance of the sensory scale chosen to measure perception, discriminate different intensities and determine the substantivity of the fragrance. Some studies comparing the labeled magnitude scale (LMS) with other magnitude scales and their derivations showed that the use of the LMS scale to measure fragrance intensity could semantically understand the intensity of the stimulus. Tests using this scale confirmed the applicability and efficiency of the LMS. PRACTICAL APPLICATIONS The objective of this article is to review the techniques used to measure odor and fragrance intensities applied on the skin. The review shows general sensory techniques and their goals, the newest olfactory mechanism and its contribution to sensory evaluation and which attributes should be considered to measure odor. Substantivity/retentivity or longevity can be regarded as the most important attributes if you want to measure fragrance performance on the skin. Past studies showed different scales tested to measure odor, and some of them demonstrated that the labeled magnitude scale is very suitable to measure fragrance on the skin.
Resumo:
A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
A simple, fast, inexpensive and reliable capillary zone electrophoresis (CZE) method for the determination of econazole nitrate in cream formulations has been developed and validated. Optimum conditions comprised a pH 2.5 phosphate buffer at 20 mmol L(-1) concentration, +30 kV applied voltage in a 31.5 cm x 50 mu m I.D. capillary. Direct UV detection at 200 nm led to an adequate sensitivity without interference from sample excipients. A single extraction step of the cream sample in hydrochloric acid was performed prior to injection. Imidazole (100 mu g mL(-1)) was used as internal standard. Econazole nitrate migrates in approximately 1.2 min. The analytical curve presented a coefficient of correlation of 0.9995. Detection and quantitation limits were 1.85 and 5.62 mu g mL(-1), respectively. Excellent accuracy and precision were obtained. Recoveries varied from 98.1 to 102.5% and intra- and inter-day precisions, calculated as relative standard deviation (RSD), were better than 2.0%. The proposed CZE method presented advantageous performance characteristics and it can be considered suitable for the quality control of econazole nitrate cream formulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
The cooling intensity of topical emulsions added with encapsulated or free menthol was evaluated by a screened and trained panel recruited based on the American Society for Testing and Materials method. A sensory panel composed of 10 trained judges performed the evaluation of samples stored at 22 +/- 2C for 24 h and, after 28 days of storage, at 37.0 +/- 0.5C. The obtained data were analyzed by analysis of variance and Tukey`s test. The results showed an increase of cooling intensity as a function of encapsulated menthol concentration. The opposite was observed in samples added with free menthol, which may have caused sensory fatigue. Storage at 37 +/- 0.5C for 28 days had no impact on the cooling intensity of emulsions containing encapsulated menthol, demonstrating high stability and suggesting its application in cooling skin care products. In contrast, emulsions added with free menthol showed a drastic decrease of cooling intensity at 37 +/- 0.5C..