974 resultados para Pseudo-Philoxenus.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
Ferromagnetic dicopper(II) complexes [Cu(2)(mu-O(2)CCH(3))(mu-OH)(L)(2)(mu-L(1))](PF(6))(2), where L = 1,10-phenanthroline (phen), L(1) = H(2)O in 1 and L = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), L(1) = CH(3)CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P2(1)/n and P2(1)/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H(2)O in 1 and CH(3)CN in 2. The Cu center dot center dot center dot Cu distances are 3.034 and 3.046 angstrom in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)(2)(BNPP)](PF(6)) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Resumo:
In this paper, we address the reconstruction problem from laterally truncated helical cone-beam projections. The reconstruction problem from lateral truncation, though similar to that of interior radon problem, is slightly different from it as well as the local (lambda) tomography and pseudo-local tomography in the sense that we aim to reconstruct the entire object being scanned from a region-of-interest (ROI) scan data. The method proposed in this paper is a projection data completion approach followed by the use of any standard accurate FBP type reconstruction algorithm. In particular, we explore a windowed linear prediction (WLP) approach for data completion and compare the quality of reconstruction with the linear prediction (LP) technique proposed earlier.
Resumo:
The tie lines delineating equilibria between different oxides of the Ca-Al-O system and liquid Ca-Al alloy has been determined at 1373 K. Equilibration of the alloy with two adjacent oxide phases in the CaO-Al2O3 pseudo-binary system was established in a closed cell made of iron. Equilibrium oxide phases were confirmed by x-ray analysis and alloy compositions were determined by chemical analysis. The compound 12CaO.7Al2O3 Ca12Al14O33 was found to be a stable phase in equilibrium with calcium alloys. The experimental diagram is consistent with that calculated from the free energies of formation of the oxide phases and activities in liquid Ca-Al alloys at 1373 K reported in the literature.
Resumo:
he thermodynamic acitivity of chromium in liquid Cu-Cr alloys is measured in the temperature range from 1473 to 1873 K using the solid state cell: Pt, W, Cr + Cr2O3 |(Y2O3) ThO2|Cu - Cr + Cr2O3, Pt The activity of copper and the Gibbs energy of mixing of the liquid alloy are derived. Activities exhibit large positive deviations from Raoult's law. The mixing properties can be represented by a pseudo-subregular solution model in which the excess entropy has the same type of functional dependence on composition as the enthalpy of mixing: ΔGE = XCr(1 - XCr)[60880 - 18750 XCr)-- T(16.25 - 7.55 XCr)]J mol-1 Pure liquid Cu and Cr are taken as the reference states. The results predict a liquid-liquid metastable miscibility gap, with TC = 1787 (±3) K and XCr = 0.436 (±0.02), lying below the liquidus. The results obtained in this study are in general agreement with experimental information reported in the literature, but provide further refinement of the thermodynamic parameters.
Resumo:
he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.
Resumo:
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid) → CaTiO3(solid), ΔG° ± 85/(J · mol−1) = −80,140 − 6.302(T/K); 4CaO(solid) + 3TiO2(solid) → Ca4Ti3O10(solid), ΔG° ± 275/(J · mol−1) = −243,473 − 25.758(T/K); 3CaO(solid) + 2TiO2(solid) → Ca3Ti2O7(solid), ΔG° ± 185/(J · mol−1) = −164,217 − 16.838(T/K). The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.
Resumo:
[(eta(6)-C(10)H(14))RuCl(mu-Cl)](2) (eta(6)-C(10)H(14) = eta(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N `'-triarylguanidines, (ArNH)(2)C=NAr, in toluene at ambient temperature to afford [(eta(6)-C(10)H(14))RuCl{kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(eta(6)-C(10)H(14))RuN(3){kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(eta(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{kappa(2)(N,N')((ArN)(2) C-N(H)Ar)}center dot xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8 center dot H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8 center dot H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral ``three legged piano stool'' geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-pi conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C=N pi* orbital of the imine unit. Complexes 1, 2, 5, 6, 8 center dot H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1.0:1.2:2:7:3.5:6.9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.
Resumo:
The use of the sulfurdiimide RN=S=NR' (R = R' = SiMe3, 3) in reactions with group 4 metallocene bis(trimethylsilyl)-acetylene complexes of the type [Cp2M(L (eta(2)-Me3Si-C2SiMe3)] (1: M = Ti, no L; 2: M = Zr, L = pyridine) has led to the formation of four-membered metallacycles 4M containing the group 4 metal, nitrogen and sulfur. DFT calculations performed on compound 4Ti indicate that this complex is best described as a sigma-complex with cyclic delocalisation of the ring electrons. Moreover, pseudo-Jahn-Teller distortion plays a significant role in stabilising this complex.
Resumo:
A new class of macrobicyclic dinickel(II) complexes Ni2L1,2 B](ClO4)(4) (1-6), where L-1,L-2 are polyaza macrobicyclic binucleating ligands, and B is a N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)) are synthesized and characterized. The redox, catalytic, DNA binding and DNA cleavage properties were studied. They exhibit two irreversible waves in the cathodic region around E-pc = -0.95 V and E-pa = -0.85 V vs. Ag/Ag+ in CH3CN-0.1 M TBAP, respectively. The first order rate constants for the hydrolysis of 4-nitrophenylphosphate to 4-nitrophenolate by the dinickel(II) complexes 1-6 are in the range from 3.36 x 10(-5) to 10.83 x 10(-5) Ms-1. The complexes 3 and 6 show good binding propensity to calf thymus DNA giving binding constant values (K-b) in the range from 3.08 x 10(5) to 5.37 x 10(5) M-1. The binding site sizes and viscosity data suggest the DNA intercalative and/or groove binding nature of the complexes. The complexes display significant hydrolytic cleavage of supercoiled pBR322DNA at pH 7.2 and 37 degrees C. The hydrolytic cleavage of DNA by the complexes is supported by the evidence from free radical quenching and T4 ligase ligation. The pseudo Michaelis-Menten kinetic parameters k(cat) = 5.44 x 10(-2) h(-1) and K-M = 6.23 x 10(-3) M for complex 3 were obtained. Complex 3 also shows an enormous enhancement of the cleavage rate, of 1.5 x 10(6), in comparison to the uncatalysed hydrolysis rate (k = 3.6 x 10(-8) h(-1)) of ds-DNA.
Resumo:
The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial separable pseudo-pure states by simulating nearest-neighbor XY interactions in a 3-spin linear chain of nuclear spin qubits. For simulating XY interactions, we follow algebraic method of Zhang et al. Phys. Rev. A 72 (2005) 012331]. Bell state between end qubits has been generated by using only the unitary evolution of the XY Hamiltonian. For generating W-state and GHZ-state a single qubit rotation is applied on second and all the three qubits, respectively after the unitary evolution of the XY Hamiltonian.
Resumo:
The quaternary oxide in the system Al2O3-CaO-TiO2 is found to have the composition Ca3Ti8Al12O37 rather than CaTi3Al8O19 as reported in the literature. The standard Gibbs energy of formation of Ca3Ti8Al12O37 from component binary oxides is measured in the temperature range from 900 to 1250 K using a solid-state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The results can be represented by the equation: delta G(f(0x))(0) (+/- 70)/J mol(-1) = -248474 - 15.706(T/K). Combining this information with thermodynamic data on calcium aluminates and titanates available in the literature, subsolidus phase relations in the pseudo-ternary system Al2O3-CaO-TiO2 are computed and presented as isothermal sections. The evolution of phase relations with temperature is highlighted. Chemical potential diagrams are computed at 1200 K, showing the stability domains of the various phases in the chemical potential-composition space. In each chemical potential diagram, chemical potential of one component is plotted against the cationic fraction of the other two components. The diagrams are valid at relatively high oxygen potentials where Ti is present in its four-valent state in all the oxide phases.
Resumo:
The effect of Tb/Dy ratio on the structural and magnetic properties of (Tb,Dy)Fe-2 class of alloys has been investigated using nine alloys of TbxDy1-xFe1.95 (x = 0-1) covering the entire range. Our results indicate that the three phases viz. (Tb,Dy)Fe-2 (major phase), (Tb,Dy)Fe-3 and(Tb,Dy)-solid solution (minor phases) coexist in all the alloys. The volume fraction of pro-peritectic (Tb,Dy)Fe-3 phase however, has a minimum at x = 0.4 and a maximum at x = 0.6 compositions. The volume fraction of this phase decreases upon heat treatment at 850 degrees C and 1000 degrees C. A Widmanstatten type precipitate of (Tb,Dy)Fe-3 was observed for Dy-rich compositions (0 <= x <= 0.5). The microstructural investigations indicate that the ternary phase equilibria of Tb-Dy-Fe are sensitive to Tb/Dy ratio including the expansion of (Tb,Dy)Fe-2 phase field which is in contrast to the pseudo-binary assumption that is followed in available literature to date. The lattice parameter, Curie temperature and coercivity are found to increase with Tb addition. Split of (440) peak of (Tb,Dy)Fe-2 observed in x >= 0.3 alloys indicate, a spin reorientation transition from 100] to 111] occurs with Tb addition. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
The stability of a long unsupported circular tunnel (opening) in a cohesive frictional soil has been assessed with the inclusion of pseudo-static horizontal earthquake body forces. The analysis has been performed under plane strain conditions by using upper bound finite element limit analysis in combination with a linear optimization procedure. The results have been presented in the form of a non-dimensional stability number (gamma H-max/c); where H = tunnel cover, c refers to soil cohesion and gamma(max) is the maximum unit weight of soil mass which the tunnel can support without collapse. The results have been obtained for various values of H/D (D = diameter of the tunnel), internal friction angle (phi) of soil, and the horizontal earthquake acceleration coefficient (alpha(h)). The computations reveal that the values of the stability numbers (i) decrease quite significantly with an increase in alpha(h), and (ii) become continuously higher for greater values of H/D and phi. As expected, the failure zones around the periphery of the tunnel becomes always asymmetrical with an inclusion of horizontal seismic body forces. (c) 2012 Elsevier Ltd. All rights reserved.