539 resultados para Protozoa.
Resumo:
Correct species identifications are of tremendous importance for invasion ecology, as mistakes could lead to misdirecting limited resources against harmless species or inaction against problematic ones. DNA barcoding is becoming a promising and reliable tool for species identifications, however the efficacy of such molecular taxonomy depends on gene region(s) that provide a unique sequence to differentiate among species and on availability of reference sequences in existing genetic databases. Here, we assembled a list of aquatic and terrestrial non-indigenous species (NIS) and checked two leading genetic databases for corresponding sequences of six genome regions used for DNA barcoding. The genetic databases were checked in 2010, 2012, and 2016. All four aquatic kingdoms (Animalia, Chromista, Plantae and Protozoa) were initially equally represented in the genetic databases, with 64, 65, 69, and 61% of NIS included, respectively. Sequences for terrestrial NIS were present at rates of 58 and 78% for Animalia and Plantae, respectively. Six years later, the number of sequences for aquatic NIS increased to 75, 75, 74, and 63% respectively, while those for terrestrial NIS increased to 74 and 88% respectively. Genetic databases are marginally better populated with sequences of terrestrial NIS of plants compared to aquatic NIS and terrestrial NIS of animals. The rate at which sequences are added to databases is not equal among taxa. Though some groups of NIS are not detectable at all based on available data - mostly aquatic ones - encouragingly, current availability of sequences of taxa with environmental and/or economic impact is relatively good and continues to increase with time.
Resumo:
Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.