980 resultados para Protein concentrations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Character of metal accumulation in fractions of thalli of four species of marine green benthos algae under background and enhanced (0.3 mg/l) element concentrations in the environment was studied in short-term 24-hour experiments. Algae were shown to hold polysaccharide and protein mechanisms of metal accumulation. Variance analysis was applied to evaluate taxonomic and ecological features of metal distribution in fractions of thalli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study assessed and compared the oxidative and reductive biotransformation of brominated flame retardants, including established polybrominated diphenyl ethers (PBDEs) and emerging decabromodiphenyl ethane (DBDPE) using an in vitro system based on liver microsomes from various arctic marine-feeding mammals: polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat as a mammalian model species. Greater depletion of fully brominated BDE209 (14-25% of 30pmol) and DBDPE (44-74% of 90pmol) occurred in individuals from all species relative to depletion of lower brominated PBDEs (BDEs 99,100, and 154; 0-3% of 30pmol). No evidence of simply debrominated metabolites was observed. Investigation of phenolic metabolites in rat and polar bear revealed formation of two phenolic, likely multiply debrominated, DBDPE metabolites in polar bear and one phenolic BDE154 metabolite in polar bear and rat microsomes. For BDE209 and DBDPE, observed metabolite concentrations were low to nondetectable, despite substantial parent depletion. These findings suggested possible underestimation of the ecosystem burden of total-BDE209, as well as its transformation products, and a need for research to identify and characterize the persistence and toxicity of major BDE209 metabolites. Similar cause for concern may exist regarding DBDPE, given similarities of physicochemical and environmental behavior to BDE209, current evidence of biotransformation, and increasing use of DBDPE as a replacement for BDE209.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soy protein isolate is typical vegetable protein with health-enhancing activities. Inulin, a prebiotic no digestible carbohydrate, has functional properties. A mashed potato serving of 200 g with added soy protein isolate and inulin concentrations of 15?60 g kg provides from 3 to 12 g of soy protein isolate and/or inulin, respectively. Currently, no information is available about the possible texture-modifying effect of this non-ionizable polar carbohydrate in different soy-based food systems. In this study, the effect of the addition of soy protein isolate and inulin blends at different soy protein isolate: inulin ratios on the degree of inulin polymerization and the rheological and structural properties of fresh mashed and frozen/thawed mashed potatoes were evaluated. The inulin chemical structure remained intact throughout the various treatments, and soy protein isolate did not affect inulin composition being a protein compatible with this fructan. Small-strain rheology showed that both ingredients behaved like soft fillers. In the frozen/thawed mashed potatoes samples,0 addition of 30 : 30 and 15 : 60 blend ratios significantly increased elasticity (G value) compared with 0 : 0 control, consequently reducing the freeze/thaw stability conferred by the cryoprotectants. Inulin crystallites caused a significant strengthening effect on soy protein isolate gel. Micrographs revealed that soy protein isolate supports the inulin structure by building up a second fine-stranded network. Thereby, possibility of using soy protein isolate and inulin in combination with mashed potatoes to provide a highly nutritious and healthy product is promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Splicing of nuclear precursors of mRNA (pre-mRNA) involves dynamic interactions between the RNA constituents of the spliceosome. The rearrangement of RNA–RNA interactions, such as the unwinding of the U4/U6 duplex, is believed to be driven by ATP-dependent RNA helicases. We recently have shown that spliceosomal U5 small nuclear ribonucleoproteins (snRNPs) from HeLa cells contain two proteins, U5–200kD and U5–100kD, which share homology with the DEAD/DEXH-box families of RNA helicases. Here we demonstrate that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro. To identify the protein responsible for this activity, U5 snRNPs were depleted of a subset of proteins under high salt concentrations and assayed for RNA unwinding. The activity was retained in U5 snRNPs that contain the U5–200kD protein but lack U5–100kD, suggesting that the U5–200kD protein could mediate U4/U6 duplex unwinding. Finally, U5–200kD was purified to homogeneity by glycerol gradient centrifugation of U5 snRNP proteins in the presence of sodium thiocyanate, followed by ion exchange chromatography. The RNA unwinding activity was found to reside exclusively with the U5–200kD DEXH-box protein. Our data raise the interesting possibility that this RNA helicase catalyzes unwinding of the U4/U6 RNA duplex in the spliceosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologues of the amtB gene of enteric bacteria exist in all three domains of life. Although their products are required for transport of the ammonium analogue methylammonium in washed cells, only in Saccharomyces cerevisiae have they been shown to be necessary for growth at low NH4+ concentrations. We now demonstrate that an amtB strain of Escherichia coli also grows slowly at low NH4+ concentrations in batch culture, but only at pH values below 7. In addition, we find that the growth defect of an S. cerevisiae triple-mutant strain lacking the function of three homologues of the ammonium/methylammonium transport B (AmtB) protein [called methylammonium/ammonium permeases (MEP)] that was observed at pH 6.1 is relieved at pH 7.1. These results provide direct evidence that AmtB participates in acquisition of NH4+/NH3 in bacteria as well as eucarya. Because NH3 is the species limiting at low pH for a given total concentration of NH4+ + NH3, results with both organisms indicate that AmtB/MEP proteins function in acquisition of the uncharged form. We confirmed that accumulation of [14C]methylammonium depends on its conversion to γ-N-methylglutamine, an energy-requiring reaction catalyzed by glutamine synthetase, and found that at pH 7, constitutive expression of AmtB did not relieve the growth defects of a mutant strain of Salmonella typhimurium that appears to require a high internal concentration of NH4+/NH3. Hence, contrary to previous views, we propose that AmtB/MEP proteins increase the rate of equilibration of the uncharged species, NH3, across the cytoplasmic membrane rather than actively transporting—that is, concentrating—the charged species, NH4+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibrillogenesis of the amyloid β-protein (Aβ) is believed to play a central role in the pathogenesis of Alzheimer’s disease. Previous studies of the kinetics of Aβ fibrillogenesis showed that the rate of fibril elongation is proportional to the concentration of monomers. We report here the study of the temperature dependence of the Aβ fibril elongation rate constant, ke, in 0.1 M HCl. The rate of fibril elongation was measured at Aβ monomer concentrations ranging from 50 to 400 μM and at temperatures from 4°C to 40°C. Over this temperature range, ke increases by two orders of magnitude. The temperature dependence of ke follows the Arrhenius law, ke = A exp (−EA/kT). The preexponential factor A and the activation energy EA are ≈6 × 1018 liter/(mol·sec) and 23 kcal/mol, respectively. Such a high value of EA suggests that significant conformational changes are associated with the binding of Aβ monomers to fibril ends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the significance of ultrafast protein folding signals (≪1 msec), we studied cytochrome c (Cyt c) and two Cyt c fragments with major C-terminal segments deleted. The fragments remain unfolded under all conditions and so could be used to define the unfolded baselines for protein fluorescence and circular dichroism (CD) as a function of denaturant concentration. When diluted from high to low denaturant in kinetic folding experiments, the fragments readjust to their new baseline values in a “burst phase” within the mixing dead time. The fragment burst phase reflects a contraction of the polypeptide from a more extended unfolded condition at high denaturant to a more contracted unfolded condition in the poorer, low denaturant solvent. Holo Cyt c exhibits fluorescence and CD burst phase signals that are essentially identical to the fragment signals over the whole range of final denaturant concentrations, evidently reflecting the same solvent-dependent, relatively nonspecific contraction and not the formation of a specific folding intermediate. The significance of fast folding signals in Cyt c and other proteins is discussed in relation to the hypothesis of an initial rate-limiting search-nucleation-collapse step in protein folding [Sosnick, T. R., Mayne, L. & Englander, S. W. (1996) Proteins Struct. Funct. Genet. 24, 413–426].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing methods for assessing protein synthetic rates (PSRs) in human skeletal muscle are invasive and do not readily provide information about individual muscle groups. Recent studies in canine skeletal muscle yielded PSRs similar to results of simultaneous stable isotope measurements using l-[1-13C, methyl-2H3]methionine, suggesting that positron-emission tomography (PET) with l-[methyl-11C]methionine could be used along with blood sampling and a kinetic model to provide a less invasive, regional assessment of PSR. We have extended and refined this method in an investigation with healthy volunteers studied in the postabsorptive state. They received ≈25 mCi of l-[methyl-11C]methionine with serial PET imaging of the thighs and arterial blood sampling for a period of 90 min. Tissue and metabolite-corrected arterial blood time activity curves were fitted to a three-compartment model. PSR (nmol methionine⋅min−1⋅g muscle tissue−1) was calculated from the fitted parameter values and the plasma methionine concentrations, assuming equal rates of protein synthesis and degradation. Pooled mean PSR for the anterior and posterior sites was 0.50 ± 0.040. When converted to a fractional synthesis rate for mixed proteins in muscle, assuming a protein-bound methionine content of muscle tissue, the value of 0.125 ± 0.01%⋅h−1 compares well with estimates from direct tracer incorporation studies, which generally range from ≈0.05 to 0.09%⋅h−1. We conclude that PET can be used to estimate skeletal muscle PSR in healthy human subjects and that it holds promise for future in vivo, noninvasive studies of the influences of physiological factors, pharmacological manipulations, and disease states on this important component of muscle protein turnover and balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although most eukaryotic mRNAs need a functional cap binding complex eIF4F for efficient 5′ end- dependent scanning to initiate translation, picornaviral, hepatitis C viral, and a few cellular RNAs have been shown to be translated by internal ribosome entry, a mechanism that can operate in the presence of low levels of functional eIF4F. To identify cellular mRNAs that can be translated when eIF4F is depleted or in low abundance and that, therefore, may contain internal ribosome entry sites, mRNAs that remained associated with polysomes were isolated from human cells after infection with poliovirus and were identified by using a cDNA microarray. Approximately 200 of the 7000 mRNAs analyzed remained associated with polysomes under these conditions. Among the gene products encoded by these polysome-associated mRNAs were immediate-early transcription factors, kinases, and phosphatases of the mitogen-activated protein kinase pathways and several protooncogenes, including c-myc and Pim-1. In addition, the mRNA encoding Cyr61, a secreted factor that can promote angiogenesis and tumor growth, was selectively mobilized into polysomes when eIF4F concentrations were reduced, although its overall abundance changed only slightly. Subsequent tests confirmed the presence of internal ribosome entry sites in the 5′ noncoding regions of both Cyr61 and Pim-1 mRNAs. Overall, this study suggests that diverse mRNAs whose gene products have been implicated in a variety of stress responses, including inflammation, angiogenesis, and the response to serum, can use translational initiation mechanisms that require little or no intact cap binding protein complex eIF4F.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) kinase was studied for its roles in physiological responses to nutritional deprivation in Escherichia coli. A mutant lacking polyP kinase exhibited an extended lag phase of growth, when shifted from a rich to a minimal medium (nutritional downshift). Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, guanosine 5′-diphosphate 3′-diphosphate, increased in response to the nutritional downshift, but, unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The expression of an amino acid biosynthetic gene, hisG, was examined by using a transcriptional lacZ fusion. Although the mutant did not express the fusion in response to the nutritional downshift, Northern blot analysis revealed a significant increase of hisG-lacZ mRNA. Amino acids generated by intracellular protein degradation are very important for the synthesis of enzymes at the onset of starvation. In the wild type, the rate of protein degradation increased in response to the nutritional downshift whereas it did not in the mutant. Supplementation of amino acids at low concentrations to the minimal medium enabled the mutant to express the hisG-lacZ fusion. Thus, the impaired regulation of protein degradation results in the adaptation defect, suggesting that polyP kinase is required to stimulate protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the activity and function of mitogen-activated protein kinase (MAPK) during neural specification in Xenopus. Ectodermal MAPK activity increased between late blastula and midgastrula stages. At midgastrula, MAPK activity in both newly induced neural ectoderm and ectoderm overexpressing the anterior neural inducer noggin was 5-fold higher than in uninduced ectoderm. Overexpression of MAPK phosphatase-1 (MKP-1) in ectoderm inhibited MAPK activity and prevented neurectoderm-specific gene expression when the ectoderm was recombined with dorsal mesoderm or treated with fibroblast growth factor (FGF). Neurectoderm-specific gene expression was observed, however, in ectoderm overexpressing both noggin and MKP-1. To evaluate the role of MAPK in posterior regionalization, ectodermal isolates were treated with increasing concentrations of FGF and assayed for MAPK activity and neurectoderm-specific gene expression. Although induction of posterior neural ectoderm by FGF was accompanied by an elevation of MAPK activity, relative MAPK activity associated with posterior neural fate was no higher than that of ectoderm specified to adopt an anterior neural fate. Thus, increasingly posterior neural fates are not correlated with quantitative increases in MAPK activity. Because MAPK has been shown to down-regulate Smad1, MAPK may disrupt bone morphogenetic protein 4 (BMP-4) signaling during neural specification. Our results suggest that MAPK plays an essential role in the establishment of neural fate in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitrate uptake were identified, and one had a Tag1 insertion in chl1, which was responsible for the phenotype. Further analysis showed that chl1 mutants have reduced high-affinity uptake in induced plants and are missing a saturable component of the constitutive, high-affinity uptake system in addition to reduced low-affinity uptake. The contribution of CHL1 to constitutive high-affinity uptake is higher when plants are grown at more acidic pH, conditions that increase the level of CHL1 mRNA. chl1 mutants show reduced membrane depolarization in root epidermal cells in response to low (250 μM) and high (10 mM) concentrations of nitrate. Low levels of nitrate (100 μM) induce a rapid increase in CHL1 mRNA. These results show that CHL1 is an important component of both the high-affinity and the low-affinity nitrate-uptake systems and indicate that CHL1 may be a dual-affinity nitrate transporter.