952 resultados para Protein Expression


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Binding of thrombospondin-1 (TSP-1) to the CD36 receptor inhibits angiogenesis and induces apoptosis in endothelial cells (EC). Conversely, matrix-bound TSP-1 supports vessel formation. In this study we analyzed the shear stress-dependent expression of TSP-1 and CD36 in endothelial cells in vitro and in vivo to reveal its putative role in the blood flow-induced remodelling of vascular networks. Shear stress was applied to EC using a cone-and-plate apparatus and gene expression was analyzed by RT-PCR, Northern and Western blot. Angiogenesis in skeletal muscles of prazosin-fed (50 mg/l drinking water; 4 d) mice was assessed by measuring capillary-to-fiber (C/F) ratios. Protein expression in whole muscle homogenates (WMH) or BS-1 lectin-enriched EC fractions (ECF) was analyzed by Western blot. Shear stress downregulated TSP-1 and CD36 expression in vitro in a force- and time-dependent manner sustained for at least 72 h and reversible by restoration of no-flow conditions. In vivo, shear stress-driven increase of C/F in prazosin-fed mice was associated with reduced expression of TSP-1 and CD36 in ECF, while TSP-1 expression in WMH was increased. Down-regulation of endothelial TSP-1/CD36 by shear stress suggests a mechanism for inhibition of apoptosis in perfused vessels and pruning in the absence of flow. The increase of extra-endothelial (e.g. matrix-bound) TSP-1 could support a splitting type of vessel growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transforming growth factor-beta (TGFbeta) superfamily and its downstream effector genes are key regulators of epithelial homeostasis. Altered expression of these genes may be associated with malignant transformation of the prostate gland. The cDNA array analysis of differential expression of the TGFbeta superfamily and functionally related genes between patient-matched noncancerous prostate (NP) and prostate cancer (PC) bulk tissue specimens highlighted two genes, namely TGFbeta-stimulated clone-22 (TSC-22) and Id4. Verification of their mRNA expression by real-time PCR in patient-matched NP and PC bulk tissue, in laser-captured pure epithelial and cancer cells and in NP and PC cell lines confirmed TSC-22 underexpression, but not Id4 overexpression, in PC and in human PC cell lines. Immunohistochemical analysis showed that TSC-22 protein expression in NP is restricted to the basal cells and colocalizes with the basal cell marker cytokeratin 5. In contrast, all matched PC samples lack TSC-22 immunoreactivity. Likewise, PC cell lines do not show detectable TSC-22 protein expression as shown by immunoblotting. TSC-22 should be considered as a novel basal cell marker, potentially useful for studying lineage determination within the epithelial compartment of the prostate. Conversely, lack of TSC-22 seems to be a hallmark of malignant transformation of the prostate epithelium. Accordingly, TSC-22 immunohistochemistry may prove to be a diagnostic tool for discriminating benign lesions from malignant ones of the prostate. The suggested tumour suppressor function of TSC-22 warrants further investigation on its role in prostate carcinogenesis and on the TSC-22 pathway as a candidate therapeutic target in PC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: The antiproliferative effects of pharmacological agents used for androgen ablative therapy in prostate cancer, including goserelin, bicalutamide and cyproterone acetate (Fluka Chemie, Buchs, Switzerland), were tested in vitro. It was determined whether they affected prostate specific antigen mRNA and protein expression independent of growth inhibition. MATERIALS AND METHODS: Goserelin, bicalutamide (AstraZeneca, Zug, Switzerland) and cyproterone acetate were added to prostate specific antigen expressing, androgen dependent LNCaP and androgen independent C4-2 cell line (Urocor, Oklahoma City, Oklahoma) cultures. Proliferation was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay (Roche, Mannheim, Germany). Prostate specific antigen mRNA expression was assessed by quantitative real-time polymerase chain reaction. Secreted prostate specific antigen protein levels were quantified by microparticle enzyme-immunoassay. RESULTS: Goserelin inhibited cell growth and prostate specific antigen protein secretion in LNCaP and C4-2 cells. Prostate specific antigen mRNA expression was not decreased. Bicalutamide did not affect cell growth or prostate specific antigen mRNA expression in LNCaP or C4-2 cells, although it significantly decreased prostate specific antigen protein secretion in LNCaP and to a lesser extent in C4-2 cells. Cyproterone acetate decreased the growth of C4-2 but not of LNCaP cells. It did not affect prostate specific antigen mRNA or protein expression in either cell line. CONCLUSIONS: Prostate specific antigen expression does not necessarily correlate with cell growth. Without a substantial effect on cell growth bicalutamide lowers prostate specific antigen synthesis, whereas cyproterone acetate decreases cell growth with no effect on prostate specific antigen secretion. Prostate specific antigen expression may be influenced by growth inhibition but also by altered mRNA and protein levels depending on the agent, its concentration and the cell line evaluated. For interpreting clinical trials prostate specific antigen is not necessarily a surrogate end point marker for a treatment effect on prostate cancer cell growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Extracellular nucleotides act as potent mitogens for renal mesangial cells (MC). In this study we determined whether extracellular nucleotides trigger additional responses in MCs and the mechanisms involved. EXPERIMENTAL APPROACH: MC migration was measured after nucleotide stimulation in an adapted Boyden-chamber. Sphingosine kinase-1 (SK-1) protein expression was detected by Western blot analysis and mRNA expression quantified by real-time PCR. SK activity was measured by an in vitro kinase assay using sphingosine as substrate. KEY RESULTS: Nucleotide stimulation caused biphasic activation of SK-1, but not SK-2. The first peak occurred after minutes of stimulation and was followed by a second delayed peak after 4-24 h of stimulation. The delayed activation of SK-1 is due to increased SK-1 mRNA steady-state levels and de novo synthesis of SK-1 protein, and depends on PKC and the classical MAPK cascade. To see whether nucleotide-stimulated cell responses require SK-1, we selectively depleted SK-1 from cells by using small-interference RNA (siRNA). MC migration is highly stimulated by ATP and UTP; this is mimicked by exogenously added S1P. Depletion of SK-1 by siRNA drastically reduced the effect of ATP and UTP on cell migration but not on cell proliferation. Furthermore, MCs isolated from SK-1-deficient mice were completely devoid of nucleotide-induced migration. CONCLUSIONS AND IMPLICATIONS: These data show that extracellular nucleotides besides being mitogenic also trigger MC migration and this cell response critically requires SK-1 activity. Thus, pharmacological intervention of SK-1 may have impacts on situations where MC migration is important such as during inflammatory kidney diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Malignant melanoma is an aggressive form of skin cancer that is highly resistant to conventional therapies. The melanoma inhibitor of apoptosis protein is a potent inhibitor of apoptosis and is overexpressed in melanoma cells, but undetectable in most normal tissues including melanocytes. We designed 20-mer phosphorothioate antisense oligonucleotides complementary to five putatively single-stranded sites on the melanoma inhibitor of apoptosis protein mRNA and investigated their ability to sensitize G361 melanoma cells to cisplatin. Inhibition of melanoma inhibitor of apoptosis protein mRNA and protein expression were measured by real-time polymerase chain reaction and immunoblotting. Cell viability and apoptosis were quantitated by colorimetric viability assays and by annexin V staining, respectively. Oligonucleotide M706 was identified as the most efficient antisense sequence which downregulated melanoma inhibitor of apoptosis protein mRNA and protein levels in G361 cells by 68 and 78%, respectively. The specificity of target downregulation was confirmed using scrambled sequence control oligonucleotides that only marginally decreased melanoma inhibitor of apoptosis protein expression. Whereas downregulation of melanoma inhibitor of apoptosis protein moderately inhibited cell growth by 26%, in combination with cisplatin, this resulted in a supra-additive effect with almost 57% reduction in G361 cell viability compared with cisplatin alone (17%) (P<0.05). Cell death was mainly due to apoptosis as demonstrated by a 3- to 4-fold increase in annexin V-positive cells and typical morphological changes compared with controls. In summary, we describe a new antisense oligonucleotide that efficiently downregulates melanoma inhibitor of apoptosis protein expression and sensitizes melanoma cells to cisplatin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In skin, vitamin E acts as the predominant lipophilic antioxidant with a protective function against irradiation and oxidative stress. In addition to that, vitamin E can also modulate signal transduction and gene expression. To study whether the four natural tocopherol analogues (alpha-, beta-, gamma-, delta-tocopherol) can influence transcriptional activity by modulating the activity of nuclear receptors, a human keratinocytes cell line (NCTC 2544) was transfected with plasmids containing the luciferase reporter gene under control by direct repeat elements (DR1-DR4), representing binding sites for four different classes of nuclear receptors. In this model, the tocopherols positively modulated only the reporter construct containing a consensus element for peroxisome proliferator-activated receptors (PPARs). The induction was strongest with gamma-tocopherol and was most likely the direct consequence of stimulation of PPARgamma protein expression in keratinocytes. Vitamin E treatment also led to increased expression of a known PPARgamma target gene involved in terminal keratinocytes differentiation, the transglutaminase-1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: Cyclopentenone prostaglandins have been shown to promote osteoblast differentiation in vitro. The aim of this study was to examine in a rat model the effects of local delivery of Delta(12)-prostaglandin J(2) (Delta(12)-PGJ(2)) on new bone formation and growth factor expression in (i) cortical defects and (ii) around titanium implants. MATERIAL AND METHODS: Standardized transcortical defects were prepared bilaterally in the femur of 28 male Wistar rats. Ten microliters of Delta(12)-PGJ(2) at 4 concentrations (10(-9), 10(-7), 10(-5) and 10(-3) mol/l) in a collagen vehicle were delivered inside a half-cylindrical titanium chamber fixed over the defect. Contralateral defects served as vehicle controls. Ten days after surgery, the amount of new bone formation in the cortical defect area was determined by histomorphometry and expression of platelet-derived growth factor (PDGF)-A and -B, insulin-like growth factor (IGF)-I/II, bone morphogenetic protein (BMP)-2 and -6 was examined by immunohistochemistry. In an additional six rats, 24 titanium implants were inserted into the femur. Five microliters of carboxymethylcellulose alone (control) or with Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) were delivered into surgically prepared beds prior to implant installation. RESULTS: Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) significantly enhanced new bone formation (33%, P<0.05) compared with control cortical defects. Delivery of Delta(12)-PGJ(2) at 10(-3) mol/l significantly increased PDGF-A and -B and BMP-2 and -6 protein expression (P<0.05) compared with control defects. No significant difference was found in IGF-I/II expression compared with controls. Administration of Delta(12)-PGJ(2) also significantly increased endosteal new bone formation around implants compared with controls. CONCLUSION: Local delivery of Delta(12)-PGJ(2) promoted new bone formation in the cortical defect area and around titanium implants. Enhanced expression of BMP-2 and -6 as well as PDGF-A and -B may be involved in Delta(12)-PGJ(2)-induced new bone formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ATP binding cassette transporter A1 (ABCA1) mediates cellular cholesterol and phospholipid efflux, and is implicated in phosphatidylserine translocation and apoptosis. Loss of functional ABCA1 in null mice results in severe placental malformation. This study aimed to establish the placental localisation of ABCA1 and to investigate whether ABCA1 expression is altered in placentas from pregnancies complicated by pre-eclampsia and antiphospholipid syndrome. ABCA1 mRNA and protein localisation studies were carried out using in situ hybridization and immunohistochemistry. Comparisons of gene expression were performed using real-time PCR and immunoblotting. ABCA1 mRNA and protein was localised to the apical syncytium of placental villi and endothelia of fetal blood vessels within the villi. ABCA1 mRNA expression was reduced in placentas from women with APS when compared to controls (p<0.001), and this was paralleled by reductions in ABCA1 protein expression. There were no differences in ABCA1 expression between placentas from pre-eclamptic pregnancies and controls. The localisation of ABCA1 in human placenta is consistent with a role in cholesterol and phospholipid transport. The decrease in ABCA1 protein in APS may reflect reduced cholesterol transport to the fetus affecting the formation of cell membranes and decreasing the level of substrate available for steroidogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peptide hormone receptors overexpressed in human tumors, such as somatostatin receptors, can be used for in vivo targeting for diagnostic and therapeutic purposes. A novel promising candidate in this field is the GLP-1 receptor, which was recently shown to be massively overexpressed in gut and lung neuroendocrine tumors--in particular, in insulinomas. Anticipating a major development of GLP-1 receptor targeting in nuclear medicine, our aim was to evaluate in vitro the GLP-1 receptor expression in a large variety of other tumors and to compare it with that in nonneoplastic tissues. METHODS: The GLP-1 receptor protein expression was qualitatively and quantitatively investigated in a broad spectrum of human tumors (n=419) and nonneoplastic human tissues (n=209) with receptor autoradiography using (125)I-GLP-1(7-36)amide. Pharmacologic competition experiments were performed to provide proof of specificity of the procedure. RESULTS: GLP-1 receptors were expressed in various endocrine tumors, with particularly high amounts in pheochromocytomas, as well as in brain tumors and embryonic tumors but not in carcinomas or lymphomas. In nonneoplastic tissues, GLP-1 receptors were present in generally low amounts in specific tissue compartments of several organs--namely, pancreas, intestine, lung, kidney, breast, and brain; no receptors were identified in lymph nodes, spleen, liver, or the adrenal gland. The rank order of potencies for receptor binding--namely, GLP-1(7-36)amide = exendin-4 >> GLP-2 = glucagon(1-29)--provided proof of specific GLP-1 receptor identification. CONCLUSION: The GLP-1 receptors may represent a novel molecular target for in vivo scintigraphy and targeted radiotherapy for a variety of GLP-1 receptor-expressing tumors. For GLP-1 receptor scintigraphy, a low-background signal can be expected, on the basis of the low receptor expression in the normal tissues surrounding tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17beta-estradiol (E(2)). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E(2) is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E(2) cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH: Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS: Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS: In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.