717 resultados para Protéine staphylococcale A
Resumo:
La prolifération cellulaire et la croissance tissulaire sont étroitement contrôlées au cours du développement. Chez la Drosophila melanogaster, ces processus sont régulés en partie par la kinase stérile-20 Slik (SLK et LOK chez les mammifères) et le suppresseur de tumeur Hippo (Hpo, MST1/2 chez les mammifères) dans les cellules épithéliales. La surexpression de la kinase Slik augmente la taille des tissus chez les mouches adultes. Cependant, les mutants slik-/- meurent avant d'avoir terminé leur développement. Lorsqu’elle est surexprimée dans les cellules épithéliales des ailes en voie de développement, cette protéine favorise la prolifération cellulaire. En outre, l'expression de Slik dans une population de cellules conduit à une surprolifération des cellules voisines, même quand elles sont physiquement séparées. Ceci est probablement dû à la sécrétion de facteurs de croissance qui stimulent la prolifération de manière paracrine. En utilisant des méthodes génétiques et transcriptomiques, nous essayons de déterminer les molécules et les mécanismes impliqués. Contrairement à ce qui a été publié, nous avons constaté que Slik ne transmet pas de signal prolifératif en inhibant le suppresseur de tumeur Merlin (Mer, NF2 chez les mammifères), un composant en amont de la voie Hippo. Plutôt, elle favorise la prolifération non-autonome et la croissance des tissus en signalisation par la kinase dRaf (la seule kinase de la famille Raf chez la drosophile). Nous prouvons que dRaf est nécessaire chez les cellules voisines pour conduire la prolifération chez ces cellules. De plus, nous avons utilisé le séquençage du transcriptome pour identifier de nouveaux effecteurs en aval de Slik. Ce qui permettra de mieux comprendre les effets de SLK et LOK chez les humains.
Resumo:
La pathologie de la fibrose kystique (FK) est causée par des mutations dans le gène codant pour le canal CFTR. La mutation la plus commune est la délétion du résidu Phe508 (∆F508), qui entraîne un mauvais repliement et la dégradation de la protéine mutée. Ainsi, l’absence du CFTR cause un dysfonctionnement du transport ionique et liquidien qui altère le phénomène de clairance mucociliaire. Il en résulte une accumulation de mucus visqueux obstruant les voies aériennes favorisant une colonisation bactérienne, spécialement par P. aeruginosa, et une inflammation chronique. Ces phénomènes entraînent des lésions épithéliales et un remodelage des voies aériennes. Selon nos analyses ultrastructurales de poumons issus de patients FK au moment de la transplantation, certaines zones de l’épithélium FK montrait des signes de d’initiation des processus de réparation. Malgré cela, un dommage épithélial progressif est observé chez les patients FK et il apparaît évident que les processus de réparation sont insuffisants pour permettre le rétablissement de l’intégrité épithéliale. Le principal objectif de mon étude était d’étudier le rôle du CFTR dans les mécanismes de réparation de l’épithélium FK et de déterminer l’impact de la correction du CFTR sur la réparation épithéliale et ce, en condition aseptique et en présence d’infection. Mes travaux montrent que l’épithélium des voies aériennes FK présente un défaut de réparation, associé, du moins en partie, à l’absence d’un CFTR fonctionnel. De plus, nous avons démontré pour la première fois que l’application du correcteur du CFTR VRT-325 permettait, non seulement, la maturation du CFTR, mais également une amélioration de la capacité des monocouches de cellules des voies aériennes FK à se réparer. D’autre part, nous avons montré que la présence du filtrat bactérien de P. aeruginosa (PsaDM) altérait non seulement l’expression et la fonction du CFTR, mais également les processus de réparation épithéliale. Enfin, nos résultats montrent que l’infection affecte la maturation du CFTR induite par le VRT-325 et diminue les effets bénéfiques du VRT-325 sur la réparation épithéliale. Mes travaux permettent de mieux comprendre le rôle du CFTR dans les processus de réparation de l’épithélium FK et de proposer une nouvelle approche thérapeutique visant à promouvoir la régénération épithéliale chez les patients FK afin de tenter de stabiliser leur état, malgré l’effet délétère de la composante infectieuse.
Resumo:
Les domaines de transactivation (TAD) acides sont présents dans plusieurs protéines oncogéniques, virales et dans des facteurs de différenciation de cellules souches. Ces domaines acides contrôlent la transcription à travers une myriade d’interactions avec divers partenaires ce qui provoque l’activation de la transcription ou leur propre élimination. Cependant, dans la dernière décennie, de plus en plus de recherches ont démontré que les TAD possédaient un sous-domaine activation/dégradation (DAD) responsable pour une fonction d'activation de la transcription dépendante de la dégradation de la protéine. Un tel phénomène peut être accompli par plusieurs moyens tels que des modifications post-traductionnelles, l’association à des cofacteurs ou la formation d’un réseau d’interaction complexe en chaînes. Or, aucune preuve concrète n’a pu clairement démontrer le fonctionnement de la dépendance paradoxale entre ces deux fonctions sur un activateur de transcription. Le DAD, a été observé dans plusieurs facteurs de transcription incluant la protéine suppresseur de tumeur p53 et le facteur de différenciation érythrocyte EKLF. Un aspect particulier des DAD est que la composition de leur séquence d’acide aminé est fortement similaire à celle des domaines de liaison à l’ubiquitine (UBD) qui jouent un rôle clé dans le contrôle de la transcription à travers leur interaction non-covalente avec l’ubiquitine. Ainsi, dans ce mémoire, nous avons étudié la possibilité que les TAD acides soient capables d’agir comme UBD pour réguler leur fonction paradoxale à travers des interactions non-covalentes avec l’ubiquitine. L’analyse est faite en utilisant la résonnance magnétique nucléaire (RMN) ainsi qu’avec des essais fonctionnels de dégradation. En somme, cette étude amène une plus grande compréhension des protéines impliquées dans le contrôle des TAD et caractérise le tout premier exemple de TAD capable d’interagir avec l’ubiquitine.
Resumo:
Le diabète de type 2 (DT2) se caractérise par une production insuffisante d'insuline par le pancréas ainsi qu'une résistance des tissus périphériques à l'action de l'insuline. Dans les cellules bêta pancréatiques, le glucose stimule la production de l'insuline en induisant la transcription de son gène et la traduction ainsi que la sécrétion de sa protéine. Paradoxalement, une exposition prolongée et simultanée de ces cellules à de hautes concentrations de glucose en présence d'acides gras conduit à la détérioration de la fonction bêta pancréatique et au développement du DT2. Toutefois, les mécanismes moléculaires responsables de ces effets du glucose ne sont que partiellement connus. L'objectif du travail décrit dans cette thèse est d'identifier les mécanismes responsables de la régulation de la transcription du gène de l'insuline. PDX-1 (de l’anglais pour pancreatic and duodenal homeobox 1) est un facteur de transcription majeur et essentiel tant pour le développement du pancréas que pour le maintien de sa fonction à l'état adulte. En réponse au glucose, PDX-1 se lie au promoteur du gène de l'insuline et induit sa transcription. Ceci est inhibé par l'acide gras palmitate. Dans la première partie des travaux effectués dans le cadre de cette thèse, nous avons identifié deux mécanismes de régulation de la transcription du gène de l'insuline: le premier via ERK1/2 (de l'anglais pour extracellular-signal-regulated protein kinases 1 and 2) et le second par l’enzyme PASK (pour per-arnt-sim kinase). Nous avons également mis en évidence l'existence d'un troisième mécanisme impliquant l'inhibition de l'expression du facteur de transcription MafA par le palmitate. Nos travaux indiquent que la contribution de la signalisation via PASK est majeure. L'expression de PASK est augmentée par le glucose et inhibée par le palmitate. Sa surexpression dans les cellules MIN6 et les îlots isolés de rats, mime les effets du glucose sur l'expression du gène de l'insuline ainsi que sur l'expression de PDX-1 et prévient les effets délétères du palmitate. Dans la deuxième partie de la thèse, nous avons identifié un nouveau mécanisme par lequel PASK augmente la stabilité protéique de PDX-1, soit via la phosphorylation et l'inactivation de la protéine kinase GSK3 bêta (de l'anglais pour glycogen synthase kinase 3 beta). Le glucose induit la translocation de PDX-1 du cytoplasme vers le noyau, ce qui est essentiel à sa liaison au promoteur de ses gènes cibles. L'exclusion nucléaire de PDX-1 a été observée dans plusieurs modèles ex vivo et in vivo de dysfonction de la cellule bêta pancréatique. Dans le dernier volet de cette thèse, nous avons démontré l'importance de l'utilisation de cellules primaires (îlots isolés et dispersés) pour étudier la translocation nucléaire de PDX-1 endogène étant donné que ce mode de régulation est absent dans les lignées insulino-sécrétrices MIN6 et HIT-T15. Ces études nous ont permis d'identifier et de mieux comprendre les mécanismes régulant la transcription du gène de l'insuline via le facteur de transcription PDX-1. Les cibles moléculaires ainsi identifiées pourraient contribuer au développement de nouvelles approches thérapeutiques pour le traitement du diabète de type 2. Mots-clés : Diabète, îlots de Langerhans, cellule bêta pancréatique, gène de l'insuline, PDX-1, PASK, GSK3 bêta, ERK1/2, PKB, glucose, palmitate.
Resumo:
Les liquides ioniques connaissent depuis quelques décennies un essor particulier en raison de leurs nombreuses propriétés physico-chimiques intéressantes, telles qu’une faible pression de vapeur saturante, une viscosité limitée, une faible miscibilité avec la plupart des solvants communs, ou encore des propriétés d’agencement supramoléculaire, qui en font des outils puissants dans de nombreux domaines de la chimie. Les sels d’imidazolium représentent la plus grande famille de liquides ioniques à ce jour. Leur modulabilité leur permet d’être dérivés pour de nombreuses applications spécifiques, notamment en synthèse organique, où ils sont utilisés majoritairement comme solvants, et plus récemment comme catalyseurs. Les travaux présentés dans cette thèse se concentrent sur leur utilisation en synthèse organique, à la fois comme solvants et principalement comme catalyseurs chiraux, catalyseurs pour lesquels l’anion du sel est l’espèce catalytique, permettant d’ajouter de la flexibilité et de la mobilité au système. En tirant parti de la tolérance des liquides ioniques envers la majorité des macromolécules naturelles, l’objectif principal des travaux présentés dans cette thèse est le développement d’un nouveau type de catalyseur bio-hybride reposant sur l’encapsulation d’un sel d’imidazolium dans une protéine. Par le biais de la technologie biotine-avidine, l’inclusion supramoléculaire de sels d’imidazolium biotinylés portant des contre-anions catalytiques dans l’avidine a été réalisée et exploitée en catalyse. Dans un premier temps, le développement et l’étude de deux sels de 1-butyl-3-méthylimidazolium possédant des anions chiraux dérivés de la trans-4-hydroxy-L-proline sont rapportés, ainsi que leur comportement dans des réactions énantiosélectives d’aldol et d’addition de Michael. Ces types de composés se sont révélés actifs et performants en milieu liquide ionique. Dans un second temps, la préparation de sels d’imidazolium dont le cation est biotinylé et portant un contre-anion achiral, a été réalisée. Le comportement de l’avidine en milieu liquide ionique et son apport en termes de chiralité sur le système bio-hybride ont été étudiés. Les résultats montrent le rôle crucial des liquides ioniques sur la conformation de la protéine et l’efficacité du catalyseur pour des réactions d’aldol. Dans un dernier temps, l’influence de la structure du cation et de l’anion sur le système a été étudiée. Différents espaceurs ont été introduits successivement dans les squelettes cationiques et anioniques des sels d’imidazolium biotinylés. Dans le cas du cation, les résultats ne révèlent aucune influence majeure sur l’efficacité du catalyseur. La structure de l’anion se montre cependant beaucoup plus importante : la préparation de différents catalyseurs bio-hybrides possédant des anions aux propriétés physico-chimiques différentes a permis d’obtenir de plus amples informations sur le mode de fonctionnement du système bio-hybride et de la coopérativité entre l’avidine et l’anion du sel d’imidazolium.La nature ionique de la liaison cation-anion offrant une liberté de mouvement accrue à l’anion dans la protéine, la tolérance à différents substrats a également été abordée après optimisation du système.
Resumo:
Les différents mécanismes de régulation posttranscriptionnelle de l’expression des gènes sont de plus en plus reconnus comme des processus essentiels dans divers phénomènes physiologiques importants, comme la prolifération cellulaire et la réponse aux dommages à l’ADN. Deux des protéines impliquées dans ce type de régulation sont Staufen1 (Stau1) et Staufen2 (Stau2). Elles sont des protéines de liaison à l’ARN double brin qui contribuent au transport de l’ARN messager (ARNm), au contrôle de la traduction, à l’épissage alternatif et sont responsables de la dégradation de certains ARNm spécifiques. Les protéines Staufen peuvent en effet s’associer à des ARNm bien précis, d’autant plus que, majoritairement, Stau1 et Stau2 ne se retrouvent pas en complexe avec les mêmes cibles. De nombreuses évidences récentes montrent l’implication de divers mécanismes de régulation posttranscriptionnelle dans la réponse aux dommages à l’ADN, plusieurs protéines de liaison à l’ARN y participant d’ailleurs. De façon importante, cette réponse dicte un ou plusieurs destin(s) à la cellule qui doit réagir à la suite de dommages à l’intégrité de son ADN: réparation de l’ADN, arrêt de la prolifération cellulaire, apoptose. Nous avons donc fait l’hypothèse que l’expression de Stau1 et/ou de Stau2 pourrait être affectée en réponse à un stress génotoxique, ce qui pourrait avoir comme conséquence de moduler l’expression et/ou la stabilité de leurs ARNm cibles. De même, notre laboratoire a récemment observé que l’expression de Stau1 varie pendant le cycle cellulaire, celle-ci étant plus élevée jusqu’au début de la mitose (prométaphase), puis elle diminue alors que les cellules complètent leur division. Par conséquent, nous avons fait l’hypothèse que Stau1 pourrait lier des ARNm de façon différentielle dans des cellules bloquées en prométaphase et dans des cellules asynchrones. D’un côté, en employant la camptothécine (CPT), une drogue causant des dommages à l’ADN, pour traiter des cellules de la lignée de cancer colorectal HCT116, nous avons observé que seule l’expression de Stau2 est réduite de façon considérable, tant au niveau de la protéine que de l’ARNm. L’utilisation d’autres agents cytotoxiques a permis de confirmer cette observation initiale. De plus, nous avons constaté que l’expression de Stau2 est touchée même dans des conditions n’engendrant pas une réponse apoptotique, ce qui suggère que cette déplétion de Stau2 est possiblement importante pour la mise en place d’une réponse appropriée aux dommages à l’ADN. D’ailleurs, la surexpression de Stau2 conjointement avec le traitement à la CPT entraîne un retard dans l’induction de l’apoptose dans les cellules HCT116. Nous avons aussi montré que la diminution de l’expression de Stau2 est due à une régulation de sa transcription en réponse au stress génotoxique, ce pourquoi une région minimale du promoteur putatif de Stau2 est nécessaire. Également, nous avons identifié que le facteur de transcription E2F1, couramment impliqué dans la réponse aux dommages à l’ADN, peut contrôler l’expression de Stau2. Ainsi, E2F1 permet une augmentation de l’expression de Stau2 dans des cellules non traitées, mais cette hausse est abolie dans des cellules traitées à la CPT, ce qui suggère que la CPT pourrait agir en inhibant l’activation transcriptionnelle de Stau2 par E2F1. Enfin, nous avons observé que certains ARNm associés à Stau2, et codant pour des protéines impliquées dans la réponse aux dommages à l’ADN et l’apoptose, sont exprimés différemment dans des cellules traitées à la CPT et des cellules non traitées. D’un autre côté, nous avons identifié les ARNm associés à Stau1 lors de la prométaphase, alors que l’expression de Stau1 est à son niveau le plus élevé pendant le cycle cellulaire, grâce à une étude à grande échelle de micropuces d’ADN dans des cellules HEK293T. Nous avons par la suite confirmé l’association entre Stau1 et certains ARNm d’intérêts, donc codant pour des protéines impliquées dans la régulation de la prolifération cellulaire et/ou le déroulement de la mitose. Une comparaison de la liaison de ces ARNm à Stau1 dans des cellules bloquées en prométaphase par rapport à des cellules asynchrones nous a permis de constater une association préférentielle dans les cellules en prométaphase. Ceci suggère une augmentation potentielle de la régulation de ces ARNm par Stau1 à ce moment du cycle cellulaire. Les données présentées dans cette thèse indiquent vraisemblablement que la régulation posttranscriptionnelle de l’expression génique contrôlée par les protéines Staufen se fait en partie grâce à la modulation de l’expression de Stau1 et de Stau2 en fonction des conditions cellulaires. Nous envisageons alors que cette variation de l’expression des protéines Staufen ait des conséquences sur des sous-ensembles d’ARNm auxquels elles sont liées et que de cette façon, elles jouent un rôle pour réguler des processus physiologiques essentiels comme la réponse aux dommages à l’ADN et la progression dans le cycle cellulaire.
Resumo:
Le centromère est le site chromosomal où le kinetochore se forme, afin d’assurer une ségrégation fidèles des chromosomes et ainsi maintenir la ploïdie appropriée lors de la mitose. L’identité du centromere est héritée par un mécanisme épigénétique impliquant une variante de l’histone H3 nommée centromere protein-A (CENP-A), qui remplace l’histone H3 au niveau de la chromatine du centromère. Des erreurs de propagation de la chromatine du centromère peuvent mener à des problèmes de ségrégation des chromosomes, pouvant entraîner l’aneuploïdie, un phénomène fréquemment observé dans le cancer. De plus, une expression non-régulée de CENP-A a aussi été rapportée dans différentes tumeurs humaines. Ainsi, plusieurs études ont cherchées à élucider la structure et le rôle de la chromatine contenant CENP-A dans des cellules en prolifération. Toutefois, la nature moléculaire de CENP-A en tant que marqueur épigénétique ainsi que ces dynamiques à l'extérieur du cycle cellulaire demeurent des sujets débat. Dans cette thèse, une nouvelle méthode de comptage de molécules uniques à l'aide de la microscopie à réflexion totale interne de la fluorescence (TIRF) sera décrite, puis exploitée afin d'élucider la composition moléculaire des nucléosomes contenant CENP-A, extraits de cellules en prolifération. Nous démontrons que les nucléosomes contenant CENP-A marquent les centromères humains de façon épigénétique à travers le cycle cellulaire. De plus, nos données démontrent que la forme prénucléosomale de CENP-A, en association avec la protéine chaperon HJURP existe sous forme de monomère et de dimère, ce qui reflète une étape intermédiaire de l'assemblage de nucléosomes contenant CENP-A. Ensuite, des analyses quantitatives de centromères lors de différenciation myogénique, et dans différents tissus adultes révèlent des changements globaux qui maintiennent la marque épigénétique dans une forme inactive suite à la différentiation terminale. Ces changements incluent une réduction du nombre de points focaux de CENP-A, un réarrangement des points dans le noyau, ainsi qu'une réduction importante de la quantité de CENP-A. De plus, nous démontrons que lorsqu'une dédifférenciation cellulaire est induite puis le cycle cellulaire ré-entamé, le phénotype "différencié" décrit ci-haut est récupéré, et les centromères reprennent leur phénotype "prolifératif". En somme, cet oeuvre décrit la composition structurale sous-jacente à l'identité épigénétique des centromères de cellules humaines lors du cycle cellulaire, et met en lumière le rôle de CENP-A à l'extérieur du cycle cellulaire.
Resumo:
Le diabète est une maladie chronique dont la principale caractéristique est un niveau plasmatique élevé de glucose, qui est causé soit par un défaut dans la production d’insuline, l’action de l’insuline, ou les deux à la fois. Plusieurs études ont démontré que l’hyperglycémie chronique peut mener à la dysfonction et même la défaillance de plusieurs organes, dont le coeur, le système vasculaire, les yeux et les reins, se traduisant par des infarctus du myocarde, des accidents cérébro-vasculaires et des complications rétinales et rénales, respectivement. La néphropathie diabétique (DN) est la principale cause de déficience rénale et affecte près de 25-40% des patients diabétiques. La DN est invariablement associée à un risque élevé d’accident cérébrovasculaire et de dysfonction cardivasculaire. L’angiotensinogène (Agt) est l’unique précurseur de tous les types d’angiotensines. En plus du système rénine-angiotensine (RAS) sytémique, le rein possède son propre système intrarénal et exprime tous les composants du RAS. L’Agt est fortement exprimé dans les cellules du tubule proximal rénal (RPTC) et y est converti en angiotensine II (AngII), le peptide biologiquement actif du RAS. Les patients diabétiques présentent de hauts niveaux d’AngII et une augmentation de l’expression des gènes du RAS, suggérant que l’activation du RAS intrarénal joue un rôle important dans la progression de la DN. Les mécanismes qui contrôlent la régulation du niveau rénal d’Agt par l’hyperglycémie et l’insuline demeurent mal compris. Le but global de cette thèse est de mieux comprendre les mécanismes moléculaires qui contrôlent l’expression du gène Agt chez la souris Akita (un modèle murin de diabète de type 1). Dans cette optique, la première partie de la thèse se concentre sur deux facteurs de transcription de la famille des ribonucléoprotéines nucléaires hétérogènes (hnRNP). Chan et collaborateurs ont déjà identifié 2 protéines nucléaires hnRNP F et hnRNP K, de 48kD et 70kD respectivement. HnRNP F et hnRNP K forment un hétérodimère et se lient à l’élément de réponse à l’insuline (IRE) présent dans le promoteur du gène Agt du rat et inhibent la transcription du gène Agt in vitro. Afin de déterminer si hnRNP F / K sont responsables de l’inhibition de l’expression rénale de Agt par l’insuline in vivo, nous avons étudié des souris Akita males traités ou non avec des implants d’insuline pour une période de 4 semaines. Des souris non-Akita males ont été employées comme contrôles. Les souris Akita développent de l’hypertension et de l’hypertrophie rénale. Le traitement à l’insuline rétablit les niveaux de glucose plasmatiques et la pression systolique (SBP), et atténue l’hypertrophie rénale, l’albuminurie (ratio albumine/créatinine urinaire, ACR) et les niveaux urinaires d’Agt et AngII chez les souris Akita. De plus, le traitement à l’insuline inhibe l’expression rénale du gène Agt, tout en augmentant l’expression des gènes hnRNP F, hnRNP K et ACE2 (enzyme de conversion de l’angiotensine-2). Dans des RPTC in vitro, l’insuline inhibe Agt, mais stimule l’expression de hnRNP F et hnRNP K en présence de hautes concentrations de glucose, et ce via la voie de signalisation MAPK p44/42 (protéine kinase activée par un mitogène). La transfection avec des petits ARN interférents (siRNA) contre hnRNP F et hnRNP K prévient l’inhibition de l’expression d’Agt par l’insuline dans les RPTC. Cette étude démontre bien que l’insuline prévient l’hypertension et atténue les dommages rénaux observés chez les souris Akita diabétiques, en partie grâce à la suppression de la transcription rénale de Agt, via une augmentation de l’expression de hnRNP F et hnRNP K. La seconde partie de cette thèse change de focus et se tourne vers le facteur Nrf2 (nuclear factor erythroid 2-related factor 2). Nrf2 est un facteur de transcription qui contrôle les gènes de la réponse antioxydante cellulaire en réponse au stress oxydant ou aux électrophiles. Le but de cette étude est d’examiner l’impact de la surexpression de la catalase (Cat) dans les RPTC sur l’expression du gène Agt via Nrf2 et sur le développement de l’hypertension et des dommages rénaux résultants chez les souris diabétiques Akita transgéniques (Tg). Nos études ont démontré que la surexpression de Cat dans les souris Akita Cat-Tg normalise la SBP, atténue les dommages rénaux et inhibe l’expression des gènes Nrf2 et Agt dans les RPTC. In vitro, le glucose élevé (HG) et l’oltipraz (un activateur de Nrf2) stimulent l’expression de Nrf2 et Agt, et cet effet peut être bloqué par la trigonelline (inhibiteur de Nrf2), des siRNA contre Nrf2, des antioxydants ou des inhibiteurs pharmacologiques NF-κB et MAPK p38. La suppression de sites de réponse à Nrf2 présents dans le promoteur du gène Agt du rat abolit la stimulation par l’oltipraz. Finalement, des souris males adultes non-transgéniques traitées avec l’oltipraz montrent une augmentation de l’expression de Nrf2 et Agt dans leurs RPTC et cette augmentation peut être normalisée par la trigonelline. Ces données permettent d’identifier un nouveau mécanisme d’action de Nrf2, par la stimulation du gène Agt intrarénal et l’activation du RAS, qui induisent l’hypertension et les dommages rénaux par le glucose élevé et les espèces réactives de l’oxygène chez les souris diabétiques. Nos conclusions permettent de démontrer que l’insuline induit l’expression de hnRNP F et hnRNP K, qui jouent ensuite un rôle protecteur en prévenant l’hypertension. La surexpression de la catalase dans les RPTC vient quant à elle atténuer l’activation de Nrf2 et ainsi réduit la SBP chez les souris Akita.
Resumo:
La localisation des ARNm par transport dirigé joue un rôle dans le développement, la motilité cellulaire, la plasticité synaptique et la division cellulaire asymétrique. Chez la levure Saccharomyces cerevisiæ, la localisation d’ARNm est un phénomène dont les mécanismes de régulation sont conservés auprès de nombreux autres organismes. Lors de la division de la levure, plus d’une trentaine de transcrits sont localisés par transport actif à l’extrémité du bourgeon de la cellule-fille. Parmi ceux-ci, l’ARNm ASH1 est le mieux caractérisé et constitue le modèle utilisé dans cette étude. Pour exercer sa fonction, la protéine Ash1 doit être produite uniquement après la localisation de l’ARNm ASH1. Pour ce faire, les mécanismes de régulation de la traduction de l’ARNm ASH1 empêchent son expression durant le transport. Ce projet de recherche vise à étudier les mécanismes de régulation de la traduction de l’ARNm ASH1 par les répresseurs traductionnels connus, soit Khd1, Puf6 et Loc1. Les études antérieures se sont penchées sur ces facteurs de manière individuelle. Cependant, dans cette étude, nous avons exploré la présence d’une collaboration entre ceux-ci. Ainsi, nous avons voulu déterminer si les répresseurs traductionnels peuvent être intégrés en une seule voie de régulation de la traduction de l’ARNm ASH1. De plus, nous avons cherché à identifier le mécanisme de recrutement des répresseurs traductionnels sur l’ARNm ASH1, qui correspond au point initial des voies de régulations de l’ARNm ASH1. Nos résultats montrent que les répresseurs traductionnels de l’ARNm ASH1, soit Khd1 et Puf6, font partie d’une même voie de régulation de la traduction. Le rôle du facteur nucléaire Loc1 dans la voie de régulation de la traduction, quant à elle, a été examinée à partir d’expériences permettant l’étude du mécanisme de recrutement des répresseurs traductionnels dans le noyau. Ainsi, nos travaux montrent que Puf6 et Loc1 sont associés de manière ARN-dépendant avec la machinerie de transcription, notamment au facteur d’élongation de la transcription Spt4-Spt5/DSIF. Par ailleurs, notre laboratoire a précédemment montré que la localisation nucléaire de la protéine de liaison à l’ARN She2 est essentielle au recrutement des facteurs Loc1 et Puf6 sur l’ARNm ASH1. Des expériences d’immunoprécipitation de la chromatine (ChIP) supportent l’hypothèse que le recrutement de Loc1 est essentiel à celui de Puf6, qui s’effectue ultérieurement. Ainsi, à partir des résultats de cette étude et des résultats publiés précédemment dans notre laboratoire, nous avons élaboré un modèle de recrutement coordonné des facteurs She2, Loc1 et Puf6 sur l’ARNm ASH1 naissant. De manière générale, cette étude a permis d’établir la présence d’une seule voie de régulation de la traduction de l’ARNm ASH1 et une meilleure connaissance du recrutement des facteurs de répression traductionnelle sur celui-ci.
Resumo:
L’auto-incompatibilité (AI) est une barrière reproductive prézygotique qui permet aux pistils d’une fleur de rejeter leur propre pollen. Les systèmes d’AI peuvent prévenir l’autofertilisation et ainsi limiter l’inbreeding. Dans l’AI gamétophytique, le génotype du pollen détermine son propre phénotype d’incompatibilité, et dans ce système, les déterminants mâles et femelles de l’AI sont codés par un locus multigénique et multi-allélique désigné le locus S. Chez les Solanaceae, le déterminant femelle de l’AI est une glycoprotéine stylaire extracellulaire fortement polymorphique possédant une activité ribonucléase et désignée S-RNase. Les S-RNases montrent un patron caractéristique de deux régions hypervariables (HVa et HVb), responsables de leur détermination allélique, et cinq régions hautement conservées (C1 à C5) impliquées dans l’activité catalytique ou la stabilisation structurelle de ces protéines. Dans ce travail, nous avons investigué plusieurs caractéristiques des S-RNases et identifié un nouveau ligand potentiel aux S-RNases chez Solanum chacoense. L’objectif de notre première étude était l’élucidation du rôle de la région C4 des S-RNases. Afin de tester l’hypothèse selon laquelle la région C4 serait impliquée dans le repliement ou la stabilité des S-RNases, nous avons généré un mutant dans lequel les quatre résidus chargés présents en région C4 furent remplacés par des résidus glycine. Cette protéine mutante ne s’accumulant pas à des niveaux détectables, la région C4 semble bien avoir un rôle structurel. Afin de vérifier si C4 est impliquée dans une liaison avec une autre protéine, nous avons généré le mutant R115G, dans lequel un acide aminé chargé fût éliminé afin de réduire les affinités de liaison dans cette région. Ce mutant n’affectant pas le phénotype de rejet pollinique, il est peu probable que la région C4 soit impliquée dans la liaison des S-RNases avec un ligand ou leur pénétration à l’intérieur des tubes polliniques. Enfin, le mutant K113R, dans lequel le seul résidu lysine conservé parmi toutes les S-RNases fût remplacé par un résidu arginine, fût généré afin de vérifier si cette lysine était un site potentiel d’ubiquitination des S-RNases. Toutefois, la dégradation des S-RNases ne fût pas inhibée. Ces résultats indiquent que C4 joue probablement un rôle structurel de stabilisation des S-RNases. Dans une seconde étude, nous avons analysé le rôle de la glycosylation des S-RNases, dont un site, en région C2, est conservé parmi toutes les S-RNases. Afin d’évaluer la possibilité que les sucres conjugués constituent une cible potentielle d’ubiquitination, nous avons généré une S11-RNase dont l‘unique site de glycosylation en C2 fût éliminé. Ce mutant se comporte de manière semblable à une S11-RNase de type sauvage, démontrant que l’absence de glycosylation ne confère pas un phénotype de rejet constitutif du pollen. Afin de déterminer si l’introduction d’un sucre dans la région HVa de la S11-RNase pourrait affecter le rejet pollinique, nous avons généré un second mutant comportant un site additionnel de glycosylation dans la région HVa et une troisième construction qui comporte elle aussi ce nouveau site mais dont le site en région C2 fût éliminé. Le mutant comportant deux sites de glycosylation se comporte de manière semblable à une S11-RNase de type sauvage mais, de manière surprenante, le mutant uniquement glycosylé en région HVa peut aussi rejeter le pollen d’haplotype S13. Nous proposons que la forme non glycosylée de ce mutant constitue un allèle à double spécificité, semblable à un autre allèle à double spécificité préalablement décrit. Il est intéressant de noter que puisque ce phénotype n’est pas observé dans le mutant comportant deux sites de glycosylation, cela suggère que les S-RNases ne sont pas déglycosylées à l’intérieur du pollen. Dans la dernière étude, nous avons réalisé plusieurs expériences d’interactions protéine-protéine afin d’identifier de potentiels interactants polliniques avec les S-RNases. Nous avons démontré que eEF1A, un composant de la machinerie de traduction chez les eucaryotes, peut lier une S11-RNase immobilisée sur résine concanavaline A. Des analyses de type pull-down utilisant la protéine eEF1A de S. chacoense étiquetée avec GST confirment cette interaction. Nous avons aussi montré que la liaison, préalablement constatée, entre eEF1A et l’actine est stimulée en présence de la S11-RNase, bien que cette dernière ne puisse directement lier l’actine. Enfin, nous avons constaté que dans les tubes polliniques incompatibles, l’actine adopte une structure agrégée qui co-localise avec les S-RNases. Ces résultats suggèrent que la liaison entre eEF1A et les S-RNases pourrait constituer un potentiel lien fonctionnel entre les S-RNases et l’altération du cytosquelette d’actine observée lors des réactions d’AI. Par ailleurs, si cette liaison est en mesure de titrer les S-RNases disponibles à l’intérieur du tube pollinique, ce mécanisme pourrait expliquer pourquoi des quantités minimales ou « seuils » de S-RNases sont nécessaires au déclenchement des réactions d’AI.
Resumo:
Le centromère est la région chromosomique où le kinétochore s'assemble en mitose. Contrairement à certaines caractéristiques géniques, la séquence centromérique n'est ni conservée entre les espèces ni suffisante à la fonction centromérique. Il est donc bien accepté dans la littérature que le centromère est régulé épigénétiquement par une variante de l'histone H3, CENP-A. KNL-2, aussi connu sous le nom de M18BP1, ainsi que ces partenaires Mis18α et Mis18β sont des protéines essentielles pour l'incorporation de CENP-A nouvellement synthétisé aux centromères. Des évidences expérimentales démontrent que KNL-2, ayant un domaine de liaison à l'ADN nommé Myb, est la protéine la plus en amont pour l'incorporation de CENP-A aux centromères en phase G1. Par contre, sa fonction dans le processus d'incorporation de CENP-A aux centromères n'est pas bien comprise et ces partenaires de liaison ne sont pas tous connus. De nouveaux partenaires de liaison de KNL-2 ont été identifiés par des expériences d'immunoprécipitation suivies d'une analyse en spectrométrie de masse. Un rôle dans l'incorporation de CENP-A nouvellement synthétisé aux centromères a été attribué à MgcRacGAP, une des 60 protéines identifiées par l'essai. MgcRacGAP ainsi que les protéines ECT-2 (GEF) et la petite GTPase Cdc42 ont été démontrées comme étant requises pour la stabilité de CENP-A incorporé aux centromères. Ces différentes observations ont mené à l'identification d'une troisième étape au niveau moléculaire pour l'incorporation de CENP-A nouvellement synthétisé en phase G1, celle de la stabilité de CENP-A nouvellement incorporé aux centromères. Cette étape est importante pour le maintien de l'identité centromérique à chaque division cellulaire. Pour caractériser la fonction de KNL-2 lors de l'incorporation de CENP-A nouvellement synthétisé aux centromères, une technique de microscopie à haute résolution couplée à une quantification d'image a été utilisée. Les résultats générés démontrent que le recrutement de KNL-2 au centromère est rapide, environ 5 minutes après la sortie de la mitose. De plus, la structure du domaine Myb de KNL-2 provenant du nématode C. elegans a été résolue par RMN et celle-ci démontre un motif hélice-tour-hélice, une structure connue pour les domaines de liaison à l'ADN de la famille Myb. De plus, les domaines humain (HsMyb) et C. elegans (CeMyb) Myb lient l'ADN in vitro, mais aucune séquence n'est reconnue spécifiquement par ces domaines. Cependant, il a été possible de démontrer que ces deux domaines lient préférentiellement la chromatine CENP-A-YFP comparativement à la chromatine H2B-GFP par un essai modifié de SIMPull sous le microscope TIRF. Donc, le domaine Myb de KNL-2 est suffisant pour reconnaître de façon spécifique la chromatine centromérique. Finalement, l'élément reconnu par les domaines Myb in vitro a potentiellement été identifié. En effet, il a été démontré que les domaines HsMyb et CeMyb lient l'ADN simple brin in vitro. De plus, les domaines HsMyb et CeMyb ne colocalisent pas avec CENP-A lorsqu'exprimés dans les cellules HeLa, mais plutôt avec les corps nucléaires PML, des structures nucléaires composées d'ARN. Donc, en liant potentiellement les transcrits centromériques, les domaines Myb de KNL-2 pourraient spécifier l'incorporation de CENP-A nouvellement synthétisé uniquement aux régions centromériques.
Resumo:
Introduction: Au Canada, le cancer de la prostate est le cancer le plus fréquemment diagnostiqué chez les hommes et le plus mortel après les cancers du poumon et du côlon. Il y a place à optimiser le traitement du cancer de la prostate de manière à mettre en œuvre une médecine personnalisée qui s’adapte aux caractéristiques de la maladie de chaque patient de façon individuelle. Dans ce mémoire, nous avons évalué la réponse aux dommages de l’ADN (RDA) comme biomarqueur potentiel du cancer de la prostate. Les lésions potentiellement oncogènes de l'ADN déclenche une cascade de signalisation favorisant la réparation de l'ADN et l’activation des points de contrôle du cycle cellulaire pour préserver l’intégrité du génome. La RDA est un mécanisme central de suppression tumorale chez l’homme. La RDA joue un rôle important dans l’arrêt de la prolifération des cellules dont les génomes sont compromis, et donc, prévient la progression du cancer en agissant comme une barrière. Cette réponse cellulaire détermine également comment les cellules normales et cancéreuses réagissent aux agents utilisés pour endommager l'ADN lors du traitement du cancer comme la radiothérapie ou la chimiothérapie, en plus la présence d,un certain niveau de RDA dans les cellules du cancer de la prostate peuvent également influer sur l'issue de ces traitements. L’activation des signaux de la RDA peut agir comme un frein au cancer dans plusieurs lésions pré-néoplasiques de l'homme, y compris le cancer de la prostate. Il a été démontré que la RDA est augmentée dans les cellules de néoplasie intra- épithéliale (PIN) comparativement aux cellules prostatiques normales. Toutefois, le devient de la RDA entre le PIN et l’adénocarcinome est encore mal documenté et aucune corrélation n'a été réalisée avec les données cliniques des patients. Notre hypothèse est que les niveaux d’activation de la RDA seront variables selon les différents grades et agressivité du cancer de la prostate. Ces niveaux pourront être corrélés et possiblement prédire les réponses cliniques aux traitements des patients et aider à définir une stratégie plus efficace et de nouveaux biomarqueurs pour prédire les résultats du traitement et personnaliser les traitements en conséquence. Nos objectifs sont de caractériser l'activation de la RDA dans le carcinome de la prostate et corréler ses données avec les résultats cliniques. Méthodes : Nous avons utilisé des micro-étalages de tissus (tissue microarrays- TMAs) de 300 patients ayant subi une prostatectomie radicale pour un cancer de la prostate et déterminé le niveau d’expression de protéines de RDA dans le compartiment stromal et épithélial des tissus normaux et cancéreux. Les niveaux d’expression de 53BP1, p-H2AX, p65 et p-CHK2 ont été quantifiés par immunofluorescence (IF) et par un logiciel automatisé. Ces marqueurs de RDA ont d’abord été validés sur des TMAs-cellule constitués de cellules de fibroblastes normales ou irradiées (pour induire une activation du RDA). Les données ont été quantifiées à l'aide de couches binaires couramment utilisées pour classer les pixels d'une image pour que l’analyse se fasse de manière indépendante permettant la détection de plusieurs régions morphologiques tels que le noyau, l'épithélium et le stroma. Des opérations arithmétiques ont ensuite été réalisées pour obtenir des valeurs correspondant à l'activation de la RDA qui ont ensuite été corrélées à la récidive biochimique et l'apparition de métastases osseuses. Résultats : De faibles niveaux d'expression de la protéine p65 dans le compartiment nucléaire épithélial du tissu normal de la prostate sont associés à un faible risque de récidive biochimique. Par ailleurs, nous avons aussi observé que de faibles niveaux d'expression de la protéine 53BP1 dans le compartiment nucléaire épithéliale du tissu prostatique normal et cancéreux ont été associés à une plus faible incidence de métastases osseuses. Conclusion: Ces résultats confirment que p65 a une valeur pronostique chez les patients présentant un adénocarcinome de la prostate. Ces résultats suggèrent également que le marqueur 53BP1 peut aussi avoir une valeur pronostique chez les patients avec le cancer de la prostate. La validation d'autres marqueurs de RDA pourront également être corrélés aux résultats cliniques. De plus, avec un suivi des patients plus long, il se peut que ces résultats se traduisent par une corrélation avec la survie. Les niveaux d'activité de la RDA pourront éventuellement être utilisés en clinique dans le cadre du profil du patient comme le sont actuellement l’antigène prostatique spécifique (APS) ou le Gleason afin de personnaliser le traitement.
Resumo:
Le Costimulateur Inductible (ICOS) est un récepteur exprimé à la surface des cellules T CD4 auxiliaires et T CD8 cytotoxiques. Il fut démontré à l’aide de modèles murins de transplantation de moelle osseuse que ICOS joue un rôle important dans l’induction de la maladie du greffon contre l’hôte aigüe (GVHD). ICOS potentialise deux signaux médiés par le récepteur de cellules T (TCR) : l’activation de la phosphoinositide 3-kinase (PI3K) ainsi que la mobilisation interne de calcium. En conditions in vitro, dans les cellules CD4 et CD8, ICOS réussi à potentialiser le flux de calcium médié par le TCR indépendamment de PI3K. La voie de signalisation de ICOS impliquée dans la GVHD demeure inconnue. Cependant, en utilisant une lignée de souris ‘knock-in’ nommée ICOS-Y181F, dans laquelle le cellules T ont sélectivement perdu la capacité d’activer PI3K par l’entremise d’ICOS, nous avons démontré que les cellules T peuvent utiliser un mécanisme ICOS indépendant de PI3K afin d’induire la GVHD. La mobilisation interne du Ca2+ mène à l’activation de NFAT, un facteur de transcription clé régulant des gènes comme IFN-γ, qui exprime une des cytokines clés impliquées dans la GVHD. Nous émettons comme hypothèse que la capacité pathogénique intacte des cellules T ICOSY181F à induire la GVHD, repose sur la signalisation du Ca2+ indépendante de PI3K. Le but de mon projet est d’identifier les résidus responsables de cette signalisation de Ca2+ médiée par ICOS ainsi que le mécanisme par lequel ce récepteur fonctionne. À l’aide de la mutagénèse dirigée, j’ai généré des mutants d’ICOS et j’ai analysé par cytométrie en flux leur capacité à activer le flux de Ca2+. J’ai ainsi identifié un groupe de lysine sur la queue cytoplasmique d’ICOS situé à proximité de la membrane comme étant essentiel à la fonction de potentialisation du flux de Ca2+. Je fournis également des preuves de l’implication de la kinase Lck, membre de la famille de kinases Src, dans la voie de signalisation de ICOS médiant la potentialisation du flux de Ca2+. Ainsi, ICOS s’associe à Lck et mène à une augmentation de l’activation de PLCγ1, la protéine effectrice clé causant la sortie de Ca2+ de la réserve intracellulaire. En conclusion, notre étude permet de comprendre davantage une des voies de signalisation d’ICOS. L’influx de Ca2+ dans les cellules T implique la voie ICOS-Lck-PLCγ1. Une compréhension plus approfondie de cette voie de signalisation pourrait s’avérer bénéfique afin d’élaborer de nouvelles stratégies menant à la prévention de maladies reliées à ICOS, comme la GVHD.
Resumo:
L’apurinic/apyrimidic endonuclease 1 (APE1) est une protéine multifonctionnelle qui joue un rôle important dans la voie de réparation de l’ADN par excision de base. Elle sert également de coactivateur de transcription et est aussi impliquée dans le métabolisme de l’ARN et la régulation redox. APE1 peut cliver les sites AP ainsi que retirer des groupements, sur des extrémités 3’ créées suite à des bris simple brin, qui bloquent les autres enzymes de réparation, permettant de poursuivre la réparation de l’ADN, puisqu’elle possède plusieurs activités de réparation de l’ADN comme une activité phosphodiestérase 3’ et une activité exonucléase 3’→5’. Les cellules de mammifères ayant subi un knockdown d’APE1 présentent une grande sensibilité face à de nombreux agents génotoxiques. APE1 ne possède qu’une seule cystéine située au 65e acide aminé. Celle-ci est nécessaire pour maintenir l’état de réduction de nombreux activateurs de transcription tels que p53, NF-κB, AP-1, c-Jun at c-Fos. Ainsi, elle se retrouve impliquée dans la régulation de l’expression génique. APE1 passe également à travers au moins 4 types de modifications post-traductionnelles : l’acétylation, la désacétylation, la phosphorylation et l’ubiquitylation. La façon dont APE1 est recrutée pour accomplir ses différentes fonctions biologiques demeure un mystère, bien que cela puisse être relié à sa capacité d’interaction avec de multiples partenaires différents. Sous des conditions de croissance normales, il a été démontré qu’APE1 interagit avec de nombreux partenaires impliqués dans de multiples fonctions. Nous émettons l’hypothèse que l’état d’oxydation d’APE1 est ce qui contrôle les partenaires avec lesquels la protéine interagira, lui permettant d’accomplir des fonctions précises. Dans cette étude nous démontrons que le peroxyde d’hydrogène altère le réseau d’interactions d’APE1. Un nouveau partenaire d’interaction d’APE1, Prdx1, un membre de la famille des peroxirédoxines responsable de récupérer le peroxyde d’hydrogène, est caractérisé. Nous démontrons qu’un knockdown de Prdx1 n’affecte pas l’activité de réparation de l’ADN d’APE1, mais altère sa détection et sa distribution cellulaire à l’intérieur des cellules HepG2 conduisant à une induction accrue de l’interleukine 8 (IL-8). L’IL8 est une chimiokine impliquée dans le stress cellulaire en conditions physiologiques et en cas de stress oxydatif. Il a été démontré que l’induction de l’IL-8 est dépendante d’APE1 indiquant que Prdx1 pourrait réguler l’activité transcriptionnelle d’APE1. Il a été découvert que Prdx1 est impliquée dans la régulation redox suite à une réponse initiée par le peroxyde d’hydrogène. Ce dernier possède un rôle important comme molécule de signalisation dans de nombreux processus biologiques. Nous montrons que Prdx1 est nécessaire pour réduire APE1 dans le cytoplasme en réponse à la présence de H2O2. En présence de Prdx1, la fraction d’APE1 présent dans le cytoplasme est réduite suite à une exposition au peroxyde d’hydrogène, et Prdx1 est hyperoxydé suite à l’interaction entre les deux molécules. Cela suggère que le signal, que produit le peroxyde d’hydrogène, sur APE1 passe par Prdx1. Un knockdown d’APE1 diminue la conversion de la forme dimérique de Prdx1 vers la forme monomérique. Cette observation implique qu’APE1 pourrait être impliquée dans la régulation de l’activité catalytique de Prdx1 en accélérant son hyperoxydation.
Resumo:
L’insuffisance rénale chronique (IRC) est un problème majeur fréquemment rencontré chez les greffés cardiaques. Les inhibiteurs de la calcineurine, pierre angulaire de l’immunosuppression en transplantation d’organes solides, sont considérés comme une des principales causes de dysfonction rénale postgreffe. Plusieurs autres éléments tels que les caractéristiques démographiques, cliniques et génétiques du receveur contribuent également au phénomène, mais il demeure plutôt difficile de déterminer quels sont les patients les plus à risque de développer une IRC après la transplantation. Ainsi, la découverte de nouveaux marqueurs génétiques de dysfonction rénale pourrait un jour mener à l’individualisation de la thérapie immunosuppressive selon le profil génétique de chaque patient. Or, on ne connaît pas les opinions des greffés à l’égard des tests pharmacogénomiques et l’on ne sait pas si celles-ci diffèrent des opinions exprimées par les individus en bonne santé. Cette thèse de doctorat a donc pour objectifs : 1- De décrire l’évolution de la fonction rénale à très long terme après la transplantation et d’identifier les marqueurs démographiques et phénotypiques associés à l’IRC postgreffe cardiaque; 2- D’identifier les marqueurs génétiques associés à la néphrotoxicité induite par les inhibiteurs de la calcineurine; 3- D’évaluer et de comparer les attitudes des patients et des individus en bonne santé par rapport à l’intégration clinique potentielle des marqueurs pharmacogénomiques. Trois projets ont été réalisés pour répondre à ces questions. Le premier repose sur une analyse rétrospective de l’évolution de la fonction rénale chez les patients greffés au sein de notre établissement entre 1983 et 2008. Nous y avons découvert que le déclin de la fonction rénale se poursuit jusqu’à 20 ans après la transplantation cardiaque et que les facteurs de risque d’IRC incluent entre autres l’âge avancé, le sexe féminin, la dysfonction rénale prégreffe, l’hypertension, l’hyperglycémie et l’utilisation de la prednisone. Le deuxième projet est une étude pharmacogénomique s’intéressant aux déterminants génétiques de la néphrotoxicité induite par les inhibiteurs de la calcineurine. Elle nous a permis d’illustrer pour la première fois qu’un polymorphisme génétique lié à PRKCB (gène codant pour la protéine kinase C-β) est associé avec la fonction rénale des patients greffés cardiaques, alors que cela n’est probablement pas le cas pour les polymorphismes de TGFB1 (gène codant pour le transforming growth factor-β1). La troisième section de cette thèse rapporte les résultats d’un questionnaire dont le but était de comparer les attitudes envers les tests pharmacogénomiques parmi un groupe de personnes en bonne santé, de patients greffés cardiaques et de patients souffrant d’insuffisance cardiaque. Cette étude a démontré que, bien que l’enthousiasme pour la pharmacogénomique soit partagé par tous ces individus, les craintes liées à la confidentialité et aux répercussions potentielles sur l’emploi et les assurances sont plus prononcées chez les personnes en bonne santé. En résumé, les travaux issus de cette thèse ont révélé que l’identification précoce des patients greffés cardiaques les plus susceptibles de présenter une détérioration de la fonction rénale ainsi que l’adoption d’une approche thérapeutique individualisée reposant notamment sur les applications cliniques de la pharmacogénomique pourraient éventuellement permettre de freiner cette complication postgreffe.