938 resultados para Programmable controllers
Resumo:
An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.
Resumo:
The major technical objectives of the RC-NSPES are to provide a framework for the concurrent operation of reactive and pro-active security functions to deliver efficient and optimised intrusion detection schemes as well as enhanced and highly correlated rule sets for more effective alerts management and root-cause analysis. The design and implementation of the RC-NSPES solution includes a number of innovative features in terms of real-time programmable embedded hardware (FPGA) deployment as well as in the integrated management station. These have been devised so as to deliver enhanced detection of attacks and contextualised alerts against threats that can arise from both the network layer and the application layer protocols. The resulting architecture represents an efficient and effective framework for the future deployment of network security systems.
Resumo:
This paper deals with the key issues encountered in testing during the development of high-speed networking hardware systems by documenting a practical method for "real-life like" testing. The proposed method is empowered by modern and commonly available Field Programmable Gate Array (FPGA) technology. Innovative application of standard FPGA blocks in combination with reconfigurability are used as a back-bone of the method. A detailed elaboration of the method is given so as to serve as a general reference. The method is fully characterised and compared to alternatives through a case study proving it to be the most efficient and effective one at a reasonable cost.
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper presents a clocking pipeline technique referred to as a single-pulse pipeline (PP-Pipeline) and applies it to the problem of mapping pipelined circuits to a Field Programmable Gate Array (FPGA). A PP-pipeline replicates the operation of asynchronous micropipelined control mechanisms using synchronous-orientated logic resources commonly found in FPGA devices. Consequently, circuits with an asynchronous-like pipeline operation can be efficiently synthesized using a synchronous design methodology. The technique can be extended to include data-completion circuitry to take advantage of variable data-completion processing time in synchronous pipelined designs. It is also shown that the PP-pipeline reduces the clock tree power consumption of pipelined circuits. These potential applications are demonstrated by post-synthesis simulation of FPGA circuits. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An indoor rowing machine has been modified for functional electrical stimulation (FES) assisted rowing exercise in paraplegia. To perform the rowing manoeuvre successfully, however, the voluntarily controlled upper body movements must be co-ordinated with the movements of the electrically stimulated paralysed legs. To achieve such co-ordination, an automatic FES controller was developed that employs two levels of hierarchy. At the upper level, a finite state controller identifies the state or phase of the rowing cycle and activates the appropriate lower-level controller, in which electrical stimulation to the paralysed leg muscles is applied with reference to switching curves representing the desired seat velocity as a function of the seat position. In a pilot study, the hierarchical control of FES rowing was shown to be intuitive, reliable and easy to use. Compared with open-loop control of stimulation, all three variants of the closed-loop switching curve controllers used less muscle stimulation per rowing cycle (73% of the open-loop control on average). Further, the closed-loop controller that used switching curves derived from normal rowing kinematics used the lowest muscle stimulation (65% of the open-loop control) and was the most convenient to use for the client.
Resumo:
An H-infinity control strategy has been developed for the design of controllers used in feedback controlled electrical substitution measurements (FCESM). The methodology has the potential to provide substantial improvements in both response time and resolution of a millimetre-wave absolute photoacoustic power meter.
Resumo:
The general packet radio service (GPRS) has been developed to allow packet data to be transported efficiently over an existing circuit-switched radio network, such as GSM. The main application of GPRS are in transporting Internet protocol (IP) datagrams from web servers (for telemetry or for mobile Internet browsers). Four GPRS baseband coding schemes are defined to offer a trade-off in requested data rates versus propagation channel conditions. However, data rates in the order of > 100 kbits/s are only achievable if the simplest coding scheme is used (CS-4) which offers little error detection and correction (EDC) (requiring excellent SNR) and the receiver hardware is capable of full duplex which is not currently available in the consumer market. A simple EDC scheme to improve the GPRS block error rate (BLER) performance is presented, particularly for CS-4, however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel and improving the user's application data rate. As GPRS requires intensive processing in the baseband, a viable field programmable gate array (FPGA) solution is presented in this paper.
Resumo:
The General Packet Radio Service (GPRS) was developed to allow packet data to be transported efficiently over an existing circuit switched radio network. The main applications for GPRS are in transporting IP datagram’s from the user’s mobile Internet browser to and from the Internet, or in telemetry equipment. A simple Error Detection and Correction (EDC) scheme to improve the GPRS Block Error Rate (BLER) performance is presented, particularly for coding scheme 4 (CS-4), however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel, improving throughput and the user’s application data rate. As GPRS requires intensive processing in the baseband, a viable hardware solution for a GPRS BLER co-processor is discussed that has been currently implemented in a Field Programmable Gate Array (FPGA) and presented in this paper.
Resumo:
Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.
Resumo:
In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.
Resumo:
In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.