928 resultados para Process modelling
Resumo:
The industrial production of aluminium is an electrolysis process where two superposed horizontal liquid layers are subjected to a mainly vertical electric current supplied by carbon electrodes. The lower layer consists of molten aluminium and lies on the cathode. The upper layer is the electrolyte and is covered by the anode. The interface between the two layers is often perturbed, leading to oscillations, or waves, similar to the waves on the surface of seas or lakes. The presence of electric currents and the resulting magnetic field are responsible for electromagnetic (Lorentz) forces within the fluid, which can amplify these oscillations and have an adverse influence on the process. The electrolytic bath vertical to horizontal aspect ratio is such, that it is advantageous to use the shallow water equations to model the interface motion. These are the depth-averaging the Navier-Stokes equations so that nonlinear and dispersion terms may be taken into account. Although these terms are essential to the prediction of wave dynamics, they are neglected in most of the literature on interface instabilities in aluminium reduction cells where only the linear theory is usually considered. The unknown variables are the two horizontal components of the fluid velocity, the height of the interface and the electric potential. In this application, a finite volume resolution of the double-layer shallow water equations including the electromagnetic sources has been developed, for incorporation into a generic three-dimensional computational fluid dynamics code that also deals with heat transfer within the cell.
Resumo:
As the complexity of parallel applications increase, the performance limitations resulting from computational load imbalance become dominant. Mapping the problem space to the processors in a parallel machine in a manner that balances the workload of each processors will typically reduce the run-time. In many cases the computation time required for a given calculation cannot be predetermined even at run-time and so static partition of the problem returns poor performance. For problems in which the computational load across the discretisation is dynamic and inhomogeneous, for example multi-physics problems involving fluid and solid mechanics with phase changes, the workload for a static subdomain will change over the course of a computation and cannot be estimated beforehand. For such applications the mapping of loads to process is required to change dynamically, at run-time in order to maintain reasonable efficiency. The issue of dynamic load balancing are examined in the context of PHYSICA, a three dimensional unstructured mesh multi-physics continuum mechanics computational modelling code.
Resumo:
The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine.
Resumo:
Le processus de planification forestière hiérarchique présentement en place sur les terres publiques risque d’échouer à deux niveaux. Au niveau supérieur, le processus en place ne fournit pas une preuve suffisante de la durabilité du niveau de récolte actuel. À un niveau inférieur, le processus en place n’appuie pas la réalisation du plein potentiel de création de valeur de la ressource forestière, contraignant parfois inutilement la planification à court terme de la récolte. Ces échecs sont attribuables à certaines hypothèses implicites au modèle d’optimisation de la possibilité forestière, ce qui pourrait expliquer pourquoi ce problème n’est pas bien documenté dans la littérature. Nous utilisons la théorie de l’agence pour modéliser le processus de planification forestière hiérarchique sur les terres publiques. Nous développons un cadre de simulation itératif en deux étapes pour estimer l’effet à long terme de l’interaction entre l’État et le consommateur de fibre, nous permettant ainsi d’établir certaines conditions pouvant mener à des ruptures de stock. Nous proposons ensuite une formulation améliorée du modèle d’optimisation de la possibilité forestière. La formulation classique du modèle d’optimisation de la possibilité forestière (c.-à-d., maximisation du rendement soutenu en fibre) ne considère pas que le consommateur de fibre industriel souhaite maximiser son profit, mais suppose plutôt la consommation totale de l’offre de fibre à chaque période, peu importe le potentiel de création de valeur de celle-ci. Nous étendons la formulation classique du modèle d’optimisation de la possibilité forestière afin de permettre l’anticipation du comportement du consommateur de fibre, augmentant ainsi la probabilité que l’offre de fibre soit entièrement consommée, rétablissant ainsi la validité de l’hypothèse de consommation totale de l’offre de fibre implicite au modèle d’optimisation. Nous modélisons la relation principal-agent entre le gouvernement et l’industrie à l’aide d’une formulation biniveau du modèle optimisation, où le niveau supérieur représente le processus de détermination de la possibilité forestière (responsabilité du gouvernement), et le niveau inférieur représente le processus de consommation de la fibre (responsabilité de l’industrie). Nous montrons que la formulation biniveau peux atténuer le risque de ruptures de stock, améliorant ainsi la crédibilité du processus de planification forestière hiérarchique. Ensemble, le modèle biniveau d’optimisation de la possibilité forestière et la méthodologie que nous avons développée pour résoudre celui-ci à l’optimalité, représentent une alternative aux méthodes actuellement utilisées. Notre modèle biniveau et le cadre de simulation itérative représentent un pas vers l’avant en matière de technologie de planification forestière axée sur la création de valeur. L’intégration explicite d’objectifs et de contraintes industrielles au processus de planification forestière, dès la détermination de la possibilité forestière, devrait favoriser une collaboration accrue entre les instances gouvernementales et industrielles, permettant ainsi d’exploiter le plein potentiel de création de valeur de la ressource forestière.
Resumo:
As advances in numerical modelling techniques support the increased confidence in predictions from computer simulations, the need remains to have experimental verification built into the design process. This paper outlines the experimental investigation carried out on a shielded vertical axis turbine in a marine environment. The experiments consist of performance measurements and the use of particle image velocimetry on a small scale device in a marine current flume. The results demonstrate that the performance of the device can be modelled numerically; in particular, the results show that the numerical model used can correctly predict the increase in performance with Reynolds number.
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
A moratorium on further bivalve leasing was established in 1999–2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.
Resumo:
The aim of this study was to model the process of development for an Online Learning Resource (OLR) by Health Care Professionals (HCPs) to meet lymphoedema-related educational needs, within an asset-based management context. Previous research has shown that HCPs have unmet educational needs in relation to lymphoedema but details on their specific nature or context were lacking. Against this background, the study was conducted in two distinct but complementary phases. In Phase 1, a national survey was conducted of HCPs predominantly in community, oncology and palliative care services, followed by focus group discussions with a sample of respondents. In Phase 2, lymphoedema specialists (LSs) used an action research approach to design and implement an OLR to meet the needs identified in Phase 1. Study findings were analysed using descriptive statistics (Phase 1), and framework, thematic and dialectic analysis to explore their potential to inform future service development and education theory. Unmet educational need was found to be specific to health care setting and professional group. These resulted in HCPs feeling poorly-equipped to diagnose and manage lymphoedema. Of concern, when identified, lymphoedema was sometimes buried for fear of overwhelming stretched services. An OLR was identified as a means of addressing the unmet educational needs. This was successfully developed and implemented with minimal additional resources. The process model created has the potential to inform contemporary leadership theory in asset-based management contexts. This doctoral research makes a timely contribution to leadership theory since the resource constraints underpinning much of the contribution has salience to current public services. The process model created has the potential to inform contemporary leadership theory in asset-based management contexts. Further study of a leadership style which incorporates cognisance of Cognitive Load Theory and Self-Determination Theory is suggested. In addition, the detailed reporting of process and how this facilitated learning for participants contributes to workplace education theory
Resumo:
The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.
Resumo:
Background: Post-discharge mortality is a frequent but poorly recognized contributor to child mortality in resource limited countries. The identification of children at high risk for post-discharge mortality is a critically important first step in addressing this problem. Objectives: The objective of this project was to determine the variables most likely to be associated with post-discharge mortality which are to be included in a prediction modelling study. Methods: A two-round modified Delphi process was completed for the review of a priori selected variables and selection of new variables. Variables were evaluated on relevance according to (1) prediction (2) availability (3) cost and (4) time required for measurement. Participants included experts in a variety of relevant fields. Results: During the first round of the modified Delphi process, 23 experts evaluated 17 variables. Forty further variables were suggested and were reviewed during the second round by 12 experts. During the second round 16 additional variables were evaluated. Thirty unique variables were compiled for use in the prediction modelling study. Conclusion: A systematic approach was utilized to generate an optimal list of candidate predictor variables for the incorporation into a study on prediction of pediatric post-discharge mortality in a resource poor setting.
Resumo:
Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.
Resumo:
The efficiency of current cargo screening processes at sea and air ports is unknown as no benchmarks exists against which they could be measured. Some manufacturer benchmarks exist for individual sensors but we have not found any benchmarks that take a holistic view of the screening procedures assessing a combination of sensors and also taking operator variability into account. Just adding up resources and manpower used is not an effective way for assessing systems where human decision-making and operator compliance to rules play a vital role. For such systems more advanced assessment methods need to be used, taking into account that the cargo screening process is of a dynamic and stochastic nature. Our project aim is to develop a decision support tool (cargo-screening system simulator) that will map the right technology and manpower to the right commodity-threat combination in order to maximize detection rates. In this paper we present a project outline and highlight the research challenges we have identified so far. In addition we introduce our first case study, where we investigate the cargo screening process at the ferry port in Calais.
Resumo:
The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immuno-degradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.
Resumo:
This study presents the procedure followed to make a prediction of the critical flutter speed for a composite UAV wing. At the beginning of the study, there was no information available on the materials used for the construction of the wing, and the wing internal structure was unknown. Ground vibration tests were performed in order to detect the structure’s natural frequencies and mode shapes. From tests, it was found that the wing possesses a high stiffness, presenting well separated first bending and torsional natural frequencies. Two finite element models were developed and matched to experimental results. It has been necessary to introduce some assumptions, due to the uncertainties regarding the structure. The matching process was based on natural frequencies’ sensitivity with respect to a change in the mechanical properties of the materials. Once experimental results were met, average material properties were also found. Aerodynamic coefficients for the wing were obtained by means of a CFD software. The same analysis was also conducted when the wing is deformed in its first four mode shapes. A first approximation for flutter critical speed was made with the classical V - g technique. Finally, wing’s aeroelastic behavior was simulated using a coupled CFD/CSD method, obtaining a more accurate flutter prediction. The CSD solver is based on the time integration of modal dynamic equations, requiring the extraction of mode shapes from the previously performed finite-element analysis. Results show that flutter onset is not a risk for the UAV, occurring at velocities well beyond its operative range.
Resumo:
Predicting the evolution of a coastal cell requires the identification of the key drivers of morphology. Soft coastlines are naturally dynamic but severe storm events and even human intervention can accelerate any changes that are occurring. However, when erosive events such as barrier breaching occur with no obvious contributory factors, a deeper understanding of the underlying coastal processes is required. Ideally conclusions on morphological drivers should be drawn from field data collection and remote sensing over a long period of time. Unfortunately, when the Rossbeigh barrier beach in Dingle Bay, County Kerry, began to erode rapidly in the early 2000’s, eventually leading to it breaching in 2008, no such baseline data existed. This thesis presents a study of the morphodynamic evolution of the Inner Dingle Bay coastal system. The study combines existing coastal zone analysis approaches with experimental field data collection techniques and a novel approach to long term morphodynamic modelling to predict the evolution of the barrier beach inlet system. A conceptual model describing the long term evolution of Inner Dingle Bay in 5 stages post breaching was developed. The dominant coastal processes driving the evolution of the coastal system were identified and quantified. A new methodology of long term process based numerical modelling approach to coastal evolution was developed. This method was used to predict over 20 years of coastal evolution in Inner Dingle Bay. On a broader context this thesis utilised several experimental coastal zone data collection and analysis methods such as ocean radar and grain size trend analysis. These were applied during the study and their suitability to a dynamic coastal system was assessed.