969 resultados para Probability distribution functions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the statistics of three interacting optical solitons under the effects of amplifier noise and filtering. We derive rigorously the Fokker-Planck equation that governs the probability distribution of soliton parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the statistics of three interacting optical solitons under the effects of amplifier noise and filtering. We derive rigorously the Fokker-Planck equation that governs the probability distribution of soliton parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a data based statistical study on the effects of seasonal variations in the growth rates of the gastro-intestinal (GI) parasitic infection in livestock. The alluded growth rate is estimated through the variation in the number of eggs per gram (EPG) of faeces in animals. In accordance with earlier studies, our analysis too shows that rainfall is the dominant variable in determining EPG infection rates compared to other macro-parameters like temperature and humidity. Our statistical analysis clearly indicates an oscillatory dependence of EPG levels on rainfall fluctuations. Monsoon recorded the highest infection with a comparative increase of at least 2.5 times compared to the next most infected period (summer). A least square fit of the EPG versus rainfall data indicates an approach towards a super diffusive (i. e. root mean square displacement growing faster than the square root of the elapsed time as obtained for simple diffusion) infection growth pattern regime for low rainfall regimes (technically defined as zeroth level dependence) that gets remarkably augmented for large rainfall zones. Our analysis further indicates that for low fluctuations in temperature (true on the bulk data), EPG level saturates beyond a critical value of the rainfall, a threshold that is expected to indicate the onset of the nonlinear regime. The probability density functions (PDFs) of the EPG data show oscillatory behavior in the large rainfall regime (greater than 500 mm), the frequency of oscillation, once again, being determined by the ambient wetness (rainfall, and humidity). Data recorded over three pilot projects spanning three measures of rainfall and humidity bear testimony to the universality of this statistical argument. © 2013 Chattopadhyay and Bandyopadhyay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We derive rigorously the Fokker-Planck equation that governs the statistics of soliton parameters in optical transmission lines in the presence of additive amplifier spontaneous emission. We demonstrate that these statistics are generally non-Gaussian. We present exact marginal probability-density functions for soliton parameters for some cases. A WKB approach is applied to describe the tails of the probability-density functions. © 2005 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present exact analytical results for the statistics of nonlinear coupled oscillators under the influence of additive white noise. We suggest a perturbative approach for analysing the statistics of such systems under the action of a deterministic perturbation, based on the exact expressions for probability density functions for noise-driven oscillators. Using our perturbation technique we show that our results can be applied to studying the optical signal propagation in noisy fibres at (nearly) zero dispersion as well as to weakly nonlinear lattice models with additive noise. The approach proposed can account for a wide spectrum of physically meaningful perturbations and is applicable to the case of large noise strength. © 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the statistics of optical data transmission in a noisy nonlinear fiber channel with a weak dispersion management and zero average dispersion. Applying analytical expressions for the output probability density functions both for a nonlinear channel and for a linear channel with additive and multiplicative noise we calculate in a closed form a lower bound estimate on the Shannon capacity for an arbitrary signal-to-noise ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work attempts to shed light to the fundamental concepts behind the stability of Multi-Agent Systems. We view the system as a discrete time Markov chain with a potentially unknown transitional probability distribution. The system will be considered to be stable when its state has converged to an equilibrium distribution. Faced with the non-trivial task of establishing the convergence to such a distribution, we propose a hypothesis testing approach according to which we test whether the convergence of a particular system metric has occurred. We describe some artificial multi-agent ecosystems that were developed and we present results based on these systems which confirm that this approach qualitatively agrees with our intuition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was supported by the Bulgarian National Science Fund under grant BY-TH-105/2005.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivation: Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function, and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Results: Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from “first passage probability distribution” to summarize statistics of ensemble averaged amino acid propensity values. In this paper, we introduce and elaborate this approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Superadditive Bisexual Galton-Watson Branching Process is considered and the total number of mating units, females and males, until the n-th generation, are studied. In particular some results about the stochastic monotony, probability generating functions and moments are obtained. Finally, the limit behaviour of those variables suitably normed is investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* This work was financially supported by RFBR-04-01-00858.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* This work was financially supported by RFBR-04-01-00858.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose is to develop expert systems where by-analogy reasoning is used. Knowledge “closeness” problems are known to frequently emerge in such systems if knowledge is represented by different production rules. To determine a degree of closeness for production rules a distance between predicates is introduced. Different types of distances between two predicate value distribution functions are considered when predicates are “true”. Asymptotic features and interrelations of distances are studied. Predicate value distribution functions are found by empirical distribution functions, and a procedure is proposed for this purpose. An adequacy of obtained distribution functions is tested on the basis of the statistical 2 χ –criterion and a testing mechanism is discussed. A theorem, by which a simple procedure of measurement of Euclidean distances between distribution function parameters is substituted for a predicate closeness determination one, is proved for parametric distribution function families. The proposed distance measurement apparatus may be applied in expert systems when reasoning is created by analogy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental comparison of information features used by neural network is performed. The sensing method was used. Suboptimal classifier agreeable to the gaussian model of the training data was used as a probe. Neural nets with architectures of perceptron and feedforward net with one hidden layer were used. The experiments were carried out with spatial ultrasonic data, which are used for car’s passenger safety system neural controller learning. In this paper we show that a neural network doesn’t fully make use of gaussian components, which are first two moment coefficients of probability distribution. On the contrary, the network can find more complicated regularities inside data vectors and thus shows better results than suboptimal classifier. The parallel connection of suboptimal classifier improves work of modular neural network whereas its connection to the network input improves the specialization effect during training.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tests for random walk behaviour in the Italian stock market are presented, based on an investigation of the fractal properties of the log return series for the Mibtel index. The random walk hypothesis is evaluated against alternatives accommodating either unifractality or multifractality. Critical values for the test statistics are generated using Monte Carlo simulations of random Gaussian innovations. Evidence is reported of multifractality, and the departure from random walk behaviour is statistically significant on standard criteria. The observed pattern is attributed primarily to fat tails in the return probability distribution, associated with volatility clustering in returns measured over various time scales. © 2009 Elsevier Inc. All rights reserved.