587 resultados para Prestressing Strands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) was the first cytokine to be described, but for 30 years its role in the immune response remained enigmatic. In recent studies, MIF has been found to be a novel pituitary hormone and the first protein identified to be released from immune cells on glucocorticoid stimulation. Once secreted, MIF counterregulates the immunosuppressive effects of steroids and thus acts as a critical component of the immune system to control both local and systemic immune responses. We report herein the x-ray crystal structure of human MIF to 2.6 angstrom resolution. The protein is a trimer of identical subunits. Each monomer contains two antiparallel alpha-helices that pack against a four-stranded beta-sheet. The monomer has an additional two beta-strands that interact with the beta-sheets of adjacent subunits to form the interface between monomers. The three beta-sheets are arranged to form a barrel containing a solvent-accessible channel that runs through the center of the protein along a molecular 3-fold axis. Electrostatic potential maps reveal that the channel has a positive potential, suggesting that it binds negatively charged molecules. The elucidated structure for MIF is unique among cytokines or hormonal mediators, and suggests that this counterregulator of glucocorticoid action participates in novel ligand-receptor interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the efficiency of packing by calculating intramolecular packing density above and below peptide planes of internal beta-pleated sheet residues in five globular proteins. The orientation of interest was chosen to allow study of regions that are approximately perpendicular to the faces of beta-pleated sheets. In these locations, nonbonded van der Waals packing interactions predominate over hydrogen bonding and solvent interactions. We observed considerable variability in packing densities within these regions, confirming that the interior packing of a protein does not result in uniform occupation of the available space. Patterns of fluctuation in packing density suggest that the regular backbone-to-backbone network of hydrogen bonds is not likely to be interrupted to maximize van der Waals interactions. However, high-density packing tends to occur toward the ends of beta-structure strands where hydrogen bonds are more likely to involve nonpolar side-chain groups or solvent molecules. These features result in internal protein folding with a central low-density core surrounded by a higher-density subsurface shell, consistent with our previous calculations regarding overall protein packing density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolated guanine quadruplex structures have been described at high resolution both in solution and in the solid state. The existence of this unusual DNA structure in vivo and its biological significance remain to be determined. We describe the binding of 3,3'-diethyloxadicarbocyanine to dimeric hairpin guanine quadruplexes. This interaction results in a set of unique spectrophotometric signatures, none of which arises from binding to single strands or Watson-Crick duplexes. These unique signatures include a new absorbance peak (lambda max = 534 nm), an induced circular dichroism (lambda = 534-626 nm), a quenching of the dye fluorescence upon excitation with visible light, and strong energy transfer from DNA. This last effect provides the basis for detecting hairpin quadruplex structures in the presence of excess amounts of nonquadruplex DNA structures, such as single strands and Watson-Crick duplexes. The mechanism of quadruplex recognition by this dye is discussed, along with the possibility of using this dye as a probe for hairpin quadruplex structures in vitro and in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemochromatosis (HC) is an inherited disorder of iron absorption, mapping within the human major histocompatibility complex (MHC). We have identified a multigene system in the murine MHC that contains excellent candidates for the murine equivalent of the human HC locus and implicate nonclassical class I genes in the control of iron absorption. This gene system is characterized by multiple copies of two head-to-head genes encoded on opposite strands and driven by one common regulatory motif. This regulatory motif has a striking homology to the promoter region of the beta-globin gene, a gene obviously involved in iron metabolism and hence termed beta-globin analogous promoter (betaGAP). Upstream of the betaGAP sequence are nonclassical class I genes. At least one of these nonclassical class I genes, Q2, is expressed in the gastrointestinal tract, the primary site of iron absorption. Also expressed in the gastrointestinal tract and downstream of the betaGAP motif is a second set of putative genes, termed Hephaestus (HEPH). Based on these observations, we hypothesized that the genes that seem to be controlled by the betaGAP regulatory motifs would be responsible for the control of Fe absorption. As a test of this hypothesis, we predicted that mice which have altered expression of class I gene products, the beta2-microglobulin knockout mice, [beta2m(-/-)], would develop Fe overload. This prediction was confirmed, and these results indicate beta2m-associated proteins are involved in the control of intestinal Fe absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To improve our understanding of the mechanism that couples nucleotide-excision repair to transcription in expressed genes, we have examined the effects of mutations in several different DNA repair genes on the removal of cyclobutane pyrimidine dimers from the individual strands of the induced lactose operon in UV-irradiated Escherichia coli. As expected, we found little repair in either strand of the lactose operon in strains with mutations in established nucleotide excision-repair genes (uvrA, uvrB, uvrC, or uvrD). In contrast, we found that mutations in either of two genes required for DNA-mismatch correction (mutS and mutL) selectively abolish rapid repair in the transcribed strand and render the cells moderately sensitive to UV irradiation. Similar results were found in a strain with a mutation in the mfd gene, the product of which has been previously shown to be required for transcription-coupled repair in vitro. Our results demonstrate an association between mismatch-correction and nucleotide-excision repair and implicate components of DNA-mismatch repair in transcription-coupled repair. In addition, they may have important consequences for human disease and may enhance our understanding of the etiology of certain cancers which have been associated with defects in mismatch correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous molecular mechanics calculations suggest that strands of peptide nucleic acids (PNAs) and complementary oligonucleotides form antiparallel duplexes stabilized by interresidue hydrogen bonds. In the computed structures, the amide carbonyl oxygen nearest the nucleobase (O7') forms an interresidue hydrogen bond with the backbone amide proton of the following residue, (n + 1)H1'. Of the 10 published two dimensional 1H NMR structures of a hexameric PNA.RNA heteroduplex. PNA(GAACTC).r(GAGUUC), 9 exhibit two to five potential interresidue hydrogen bonds. In our minimized average structure, created from the coordinates of these 10 NMR structures, three of the five possible interresidue hydrogen bond sites within the PNA backbone display the carbonyl oxygen (O7') and the amide proton (n + 1)H1' distances and N1'-H1'-(n - 1)O7' angles optimal for hydrogen bond formation. The finding of these interresidue hydrogen bonds supports the results of our previous molecular mechanics calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Holliday junction, a key intermediate in both homologous and site-specific recombination, is generated by the reciprocal exchange of single strands between two DNA duplexes. Resolution of the junctions can occur in two directions with respect to flanking markers, either restoring the parental DNA configuration or generating a genetic crossover. Recombination can be regulated, in principle, by factors that influence the directionality of the resolution step. We demonstrate that the vaccinia virus DNA topoisomerase, a eukaryotic type I enzyme, catalyzes resolution of synthetic Holliday junctions in vitro. The mechanism entails concerted transesterifications at two recognition sites, 5'-CCCTT decreases, that are opposed within a partially mobile four-way junction. Cruciforms are resolved unidirectionally and with high efficiency into two linear duplexes. These findings suggest a model whereby type I topoisomerases may either promote or suppress genetic recombination in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inverted repeats of DNA are widespread in the genomes of eukaryotes and prokaryotes and can mediate genome rearrangement. We studied rearrangement mediated by plasmid-borne inverted repeats in Escherichia coli. We show that inverted repeats can mediate an efficient and recA-independent recombination event. Surprisingly, the product of this recombination is not that of simple inversion between the inverted repeats, but almost exclusively an unusual head-to-head dimer with complex DNA rearrangement. Moreover, this recombination is dramatically reduced by increasing the distance separating the repeats. These results can be readily explained by a model involving reciprocal switching of the leading and lagging strands of DNA replication within the inverted repeats, which leads to the formation of a Holliday junction. Reciprocal strand switching during DNA replication might be a common mechanism for genome rearrangement associated with inverted duplication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular cloning of components of protective antigenic preparations has suggested that related parasite fatty acid-binding proteins could form the basis of the protective immune crossreactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. Molecular models of the two parasite proteins showed that both molecules adopt the same basic three-dimensional structure, consisting of a barrel-shaped molecule formed by 10 antiparallel beta-pleated strands joined by short loops, and revealed the likely presence of crossreactive, discontinuous epitopes principally derived from amino acids in the C-terminal portions of the molecules. A recombinant form of the S. mansoni antigen, rSm14, protected outbred Swiss mice by up to 67% against challenge with S. mansoni cercariae in the absence of adjuvant and without provoking any observable autoimmune response. The same antigen also provided complete protection against challenge with F. hepatica metacercariae in the same animal model. The results suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni, of veterinary and human importance, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pores of voltage-gated cation channels are formed by four intramembrane segments that impart selectivity and conductance. Remarkably little is known about the higher order structure of these critical pore-lining or P segments. Serial cysteine mutagenesis reveals a pattern of side-chain accessibility that contradicts currently favored structural models based on alpha-helices or beta-strands. Like the active sites of many enzymes of known structure, the sodium channel pore consists of irregular loop regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have constructed simian virus 40 minireplicons containing uniquely placed cis,syn-thymine dimers (T <> T) for the analysis of leading- and lagging-strand bypass replication. Assaying for replication in a human cell-free extract through the analysis of full-size labeled product molecules and restriction fragments spanning the T <> T site resulted in the following findings: (i) The primary site of synthesis blockage with T <> T in either the leading or lagging strand was one nucleotide before the lesion. (ii) Replicative bypass of T <> T was detected in both leading and lagging strands. The efficiency of synthesis past T <> T was 22% for leading-strand T <> T and 13% for lagging-strand T <> T. (iii) The lagging-strand T <> T resulted in blocked retrograde synthesis with the replication fork proceeding past the lesion, resulting in daughter molecules containing small gaps (form II' DNA). (iv) With T <> T in the leading-strand template, both the leading and lagging strands were blocked, representing a stalled replication fork. Uncoupling of the concerted synthesis of the two strands of the replication fork was observed, resulting in preferential elongation of the undamaged lagging strand. These data support a model of selective reinitiation downstream from the lesion on lagging strands due to Okazaki synthesis, with no reinitiation close to the damage site on leading strands [Meneghini, R. & Hanawalt, P.C. (1976) Biochim. Biophys. Acta 425, 428-437].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structurally neighboring residues are categorized according to their separation in the primary sequence as proximal (1-4 positions apart) and otherwise distal, which in turn is divided into near (5-20 positions), far (21-50 positions), very far ( > 50 positions), and interchain (from different chains of the same structure). These categories describe the linear distance histogram (LDH) for three-dimensional neighboring residue types. Among the main results are the following: (i) nearest-neighbor hydrophobic residues tend to be increasingly distally separated in the linear sequence, thus most often connecting distinct secondary structure units. (ii) The LDHs of oppositely charged nearest-neighbors emphasize proximal positions with a subsidiary maximum for very far positions. (iii) Cysteine-cysteine structural interactions rarely involve proximal positions. (iv) The greatest numbers of interchain specific nearest-neighbors in protein structures are composed of oppositely charged residues. (v) The largest fraction of side-chain neighboring residues from beta-strands involves near positions, emphasizing associations between consecutive strands. (vi) Exposed residue pairs are predominantly located in proximal linear positions, while buried residue pairs principally correspond to far or very far distal positions. The results are principally invariant to protein sizes, amino acid usages, linear distance normalizations, and over- and underrepresentations among nearest-neighbor types. Interpretations and hypotheses concerning the LDHs, particularly those of hydrophobic and charged pairings, are discussed with respect to protein stability and functionality. The pronounced occurrence of oppositely charged interchain contacts is consistent with many observations on protein complexes where multichain stabilization is facilitated by electrostatic interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods of structural and statistical analysis of the relation between the sequence and secondary and three-dimensional structures are developed. About 5000 secondary structures of immunoglobulin molecules from the Kabat data base were predicted. Two statistical analyses of amino acids reveal 47 universal positions in strands and loops. Eight universally conservative positions out of the 47 are singled out because they contain the same amino acid in > 90% of all chains. The remaining 39 positions, which we term universally alternative positions, were divided into five groups: hydrophobic, charged and polar, aromatic, hydrophilic, and Gly-Ala, corresponding to the residues that occupied them in almost all chains. The analysis of residue-residue contacts shows that the 47 universal positions can be distinguished by the number and types of contacts. The calculations of contact maps in the 29 antibody structures revealed that residues in 24 of these 47 positions have contacts only with residues of antiparallel beta-strands in the same beta-sheet and residues in the remaining 23 positions always have far-away contacts with residues from other beta-sheets as well. In addition, residues in 6 of the 47 universal positions are also involved in interactions with residues of the other variable or constant domains.