924 resultados para Preparation of ligands
Resumo:
The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC). This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System. Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country, depending largely on the overall accessibility and quality of the primary soil data available in the case study areas. The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution. Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application. Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use and climate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background Pharmacy aseptic units prepare and supply injectables to minimise risks. The UK National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors, including near-misses, since 2003. Objectives The cumulative reports from January 2004 to December 2007, inclusive, were analysed. Methods The different variables of product types, error types, staff making and detecting errors, stage errors detected, perceived contributory factors, and potential or actual outcomes were presented by cross-tabulation of data. Results A total of 4691 reports were submitted against an estimated 958 532 items made, returning 0.49% as the overall error rate. Most of the errors were detected before reaching patients, with only 24 detected during or after administration. The highest number of reports related to adult cytotoxic preparations (40%) and the most frequently recorded error was a labelling error (34.2%). Errors were mostly detected at first check in assembly area (46.6%). Individual staff error contributed most (78.1%) to overall errors, while errors with paediatric parenteral nutrition appeared to be blamed on low staff levels more than other products were. The majority of errors (68.6%) had no potential patient outcomes attached, while it appeared that paediatric cytotoxic products and paediatric parenteral nutrition were associated with greater levels of perceived patient harm. Conclusions The majority of reports were related to near-misses, and this study highlights scope for examining current arrangements for checking and releasing products, certainly for paediatric cytotoxic and paediatric parenteral nutrition preparations within aseptic units, but in the context of resource and capacity constraints.
Resumo:
Rationale: In UK hospitals, the preparation of all total parenteral nutrition (TPN) products must be made in the pharmacy as TPNs are categorised as high-risk injectables (NPSA/2007/20). The National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors in the UK since August 2003. This study reports on types of error associated with the preparation of TPNs, including the stage at which these were identified and potential and actual patient outcomes. Methods: Reports of compounding errors for the period 1/2004 - 3/2007 were analysed on an Excel spreadsheet. Results: Of a total of 3691 compounding error reports, 674 (18%) related to TPN products; 548 adult vs. 126 paediatric. A significantly higher proportion of adult TPNs (28% vs. 13% paediatric) were associated with labelling errors and a significantly higher proportion of paediatric TPNs (25% vs. 15% adult) were associated with incorrect transcriptions (Chi-Square Test; p<0.005). Labelling errors were identified equally by pharmacists (42%) and technicians (48%) with technicians detecting mainly at first check and pharmacists at final check. Transcription errors were identified mainly by technicians (65% vs. 27% pharmacist) at first check. Incorrect drug selection (13%) and calculation errors (9%) were associated with adult and paediatric TPN preparations in the same ratio. One paediatric TPN error detected at first check was considered potentially catastrophic; 31 (5%) errors were considered of major and 38 (6%) of moderate potential consequence. Five errors (2 moderate, 1 minor) were identified during or after administration. Conclusions: While recent UK patient safety initiatives are aimed at improving the safety of injectable medicines in clinical areas, the current study highlights safety problems that exist within pharmacy production units. This could be used in the creation of an error management tool for TPN compounding processes within hospital pharmacies.
Resumo:
The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.
Resumo:
The palladium-catalyzed cross-coupling reaction of 3,4-bis(tributylstannyl)furan-2(5H)-one using chelating ligand or polar solvent gives mixtures of single and double coupled products, even when one equivalent of halide coupling partner is used. After optimization, the double coupling reaction was shown to be general, with the use of two equivalents of aryl iodides giving 3,4-disubstituted furanones, The reaction using benzyl bromides proceeds at lower temperatures than the corresponding coupling using aryl iodides, giving dibenzylfuranones. The methodology has been exemplified in a synthesis of (+/-)-hinokinin.
Resumo:
beta-Lactones have, for the first time, been prepared by 4-exo-trig radical cyclization. Thus, alpha-ethenoyloxy radicals react in the presence of tributylstannane in a photothermal process to give beta-lactones. Highest yields were obtained when groups capable of stabilizing a carboncentered radical were present at the 3-position of the alkenoate acceptor.
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
In this paper, we report a new method based on supercritical carbon dioxide (scCO(2)) to fill and distribute the porous magnetic nanoparticles with n-octanol in a homogeneous manner. The high solubility of n-octanol in scCO(2) and high diffusivity and permeability of the fluid allow efficient delivery of n-octanol into the porous magnetic nanoparticles. Thus, the n-octanol-loaded magnetic nanoparticles can be readily dispersed into aqueous buffer (pH 7.40) to form a homogenous suspension consisting of nano-sized n-octanol droplets. We refer this suspension as the n-octanol stock solution. The n-octanol stock solution is then mixed with bulk aqueous phase (pH 7.40) containing an organic compound prior to magnetic separation. The small-size of the particles and the efficient mixing enable a rapid establishment of the partition equilibrium of the organic compound between the solid supported n-octanol nano-droplets and the bulk aqueous phase. UV-vis spectrophotometry is then applied to determine the concentration of the organic compound in the aqueous phase both before and after partitioning (after magnetic separation). As a result, log D values of organic compounds of pharmaceutical interest determined by this modified method are found to be in excellent agreement with the literature data. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.