967 resultados para Postural instability
Resumo:
Individuals with Parkinson's disease (PD) seem to present asymmetric postural control, and the commitment to postural control that is a big factor of falls in this population. However, the asymmetry in the postural control of fallers and non fallers with PD and neurologically healthy elderly is not too much studied. The objective of the study is to analyze the asymmetry in postural control in different static positions of elderly patients with PD and healthy elderly fallers and non fallers. The study included 70 older adults with PD and 70 neurologically healthy (CG). The groups were matched for age, gender, height, weight and cognitive condition. It was evaluated the clinical, cognitive status and incidence of falls among its participants through weekly prospective follow-up of 4 months. Then, for each group, CG and PD, it was selected 12 elderly fallers and 12 elderly non fallers to evaluate postural control. Participants were evaluated through two force platforms in conditions of bipedal support, unipedal and tandem position. It was realized 3 attempts of 30s for each condition. For unipedal and tandem condition it was made 3 attempts for each lower limb. The parameters of interest of the center of pressure (CoP), were analyzed for each condition and compared by MANOVAs with factor group, fall and asymmetry. Post hoc Tukey tests were used to determine the relationships between them. The results show that CG individuals showed greater velocity and CoP area in relation to PD. It was verified that at the control group that non fallers individuals (CGN) had more displacement and RMS in the average lateral direction in the dominant limb when compared to the less affected limb of non fallers with PD (PDN). Faller individuals in the control group (CGF) had larger area in the non dominant limb when compared to the most affected leg of fallers individuals with PD (PDF). Still, the PDF individuals had higher RMS in anteroposterior feeling....
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain.A child with cerebral palsy may have impairments in motor control, which contributes to loss of functional abilities in posture and mobility. The severity of the impairment on the neuromuscular system determines the variations of functional mobility in children with cerebral palsy. The control of the patient, during the dental treatment, is of fundamental importance because these patients present some pathological reflexes which interfere in the odontological assistance
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Saccadic eye movements have been shown to affect posture by decreasing the magnitude of body sway in young adults. However, there is no evidence of how the search for visual information that occurs during eye movements affects postural control in older adults. The purpose of the present study was to determine the influence of saccadic eye movements on postural control in older adults while they stood on 2 different bases of support. Twelve older adults stood upright in 70-s trials under 2 stance conditions (wide and narrow) and 3 gaze conditions (fixation, saccadic eye movements at 0.5 Hz, and saccadic eye movements at 1.1 Hz). Head and trunk sway amplitude and mean sway frequency were measured in both the anterior/posterior (AP) and medial/lateral (ML) directions. The results showed that the amplitude of body sway was reduced during saccades compared with fixation, as previously observed in young adults. However, older adults exhibited similar sway amplitude and frequency in the AP direction under the wide and narrow stance conditions, which is different from observations in young adults, who display larger sway in a narrow stance compared with a wide stance while performing saccades. These results suggest that although older adults are affected by saccadic eye movements by a decrease in the amplitude of body sway, as observed in young adults, they present a more rigid postural control strategy that does not allow larger sway during a more challenging stance condition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Time series analysis of a diatom-inferred drought record suggests that Holocene hydroclimate of the northern Rocky Mountains has been characterized by oscillation between two mean climate states. The dominant climate state was initiated at the onset of the Holocene (ca. 11 ka); under this climate state, drought was strongly cyclic, recurring at frequencies that are similar to twentieth century multidecadal phase changes of the Pacific Decadal Oscillation. This pattern remained consistent throughout much of the mid- Holocene, continuing until ca. 4.5 ka. After this time the mean climate state changed, and drought recurrence became unstable; periods of cyclic drought alternated with periods of less predictable drought. The timing of this shift in climate was coincident with widespread severe drought in the mid-continent of North America. Overall, the strongest periodicity in severe drought occurred during the mid-Holocene, when temperatures in the northern Rocky Mountains were warmer than today.
Resumo:
Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22 degrees S and 25 degrees S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323-350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days(-1) for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
Esse estudo teve como objetivo examinar possíveis alterações na dinâmica intrínseca de crianças e adultos decorrentes de informações externas na realização de uma tarefa de manutenção da postura ereta. Participaram do estudo dez crianças de 8 anos de idade e dez adultos jovens de ambos os gêneros. Eles permaneceram na posição ereta dentro de uma sala móvel que foi movimentada continuamente para frente e para trás. Os participantes recebiam informação sobre o movimento da sala e eram solicitados a não oscilar ou a oscilar junto com o movimento da mesma. Os resultados mostraram que a manipulação da informação visual induziu oscilação corporal correspondente (dinâmica intrínseca) em crianças e adultos. Informação sobre o movimento da sala e solicitação de uma ação (informação comportamental) alteraram o relacionamento entre informação visual e oscilação corporal. Crianças apresentaram mais dificuldades em alterar a dinâmica intrínseca do que adultos, indicando que elas são mais dependentes da dinâmica intrínseca do que adultos. Esses resultados trazem implicações importantes para a situação de ensino-aprendizagem, pois indica que aprendizagem envolvendo crianças deve ser estruturada propiciando condições mais favoráveis para alterações na dinâmica intrínseca para que os objetivos da mesma sejam alcançados.
Resumo:
Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS proprioception gives a better feedback to reduce force fluctuation in isometric plantar flexion conditions.
Resumo:
Background: Exercise programs have proved to be helpful for frail older adults. This study aimed to investigate the effects of an exercise program with a focus on postural control exercises in frail older adults. Method: Twenty-six older adults (76.7 +/- 4.9 years) deemed clinically stable, chosen from the Falls Unit, University Hospital Mutua Terrassa, Barcelona, Spain, participated in this single-group study. Volunteers' postural control was evaluated using the Timed Up and Go test (TUG) and the Guralnik test battery, and their static and dynamic posturography were evaluated using the Synapsys Posturography System (R). These evaluations were performed before and after the intervention program, which included an educational session and two weekly 1-hour sessions over an 8-week period of stretching exercises, proprioception, balance, and motor coordination. Data were analyzed using the Student's t-test or the Wilcoxon test, with a significance level of 5%. Results: The TUG and Guralnik tests did not show significant differences. Concerning static posturography, there was improvement in the base of support (P = 0.006), anteroposterior displacement with eyes open (P = 0.02) and closed (P = 0.03), and the total amplitude of the center of pressure with eyes closed (P = 0.02). Regarding dynamic posturography, a decrease of the oscillation speed in the anteroposterior direction (P = 0.01) was observed in individuals with their eyes open. Conclusion: The program used in this study was safe and was able to promote some improvement in postural control, especially in the anteroposterior direction and in the base of support. However, it is noteworthy that further improvements could be obtained from a program of longer duration and greater frequency.
Resumo:
Dense enough compact objects were recently shown to lead to an exponentially fast increase of the vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry.