962 resultados para Plant water relationships
Resumo:
This paper describes a new bio-indicator method for assessing wetland ecosystem health: as such, the study is particularly relevant to current legislation such as the EU Water Framework Directive, which provides a baseline of the current status Of Surface waters. Seven wetland sites were monitored across northern Britain, with model construction data for predicting, eco-hydroloplical relationships collected from five sites during 1999, Two new sites and one repeat site were monitored during 2000 to provide model test data. The main growing season for the vegetation, and hence the sampling period, was May-August during both years. Seasonal mean concentrations of nitrate (NO3-) in surface and soil water samples during 1999 ranged from 0.01 to 14.07 mg N 1(-1), with a mean value of 1.01 mg N 1(-1). During 2000, concentrations ranged from trace level (<0.01 m- N 1(-1)) to 9.43 mg N 1(-1), with a mean of 2.73 mg N 1(.)(-1) Surface and soil-water nitrate concentrations did not influence plant species composition significantly across representative tall herb fen and mire communities. Predictive relationships were found between nitrate concentrations and structural characteristics of the wetland vegetation, and a model was developed which predicted nitrate concentrations from measures of plant diversity, canopy structure and density of reproductive structures. Two further models, which predicted stem density and density of reproductive structures respectively, utilised nitrate concentration as one of the independent predictor variables. Where appropriate, the models were tested using data collected during 2000. This approach is complementary to species-based monitoring, representing a useful and simple too] to assess ecological status in target wetland systems and has potential for bio-indication purposes.
Resumo:
Adsorption of arsenic onto soil was investigated as a means of understanding arsenic-induced release of phosphate. In batch adsorption experiments As adsorption was accompanied by P desorption. At low As additions, the ratio As adsorbed: P desorbed remained constant. At higher As additions, P desorption reached a maximum while As adsorption continued to increase. The P desorption maximum coincided with an increase in pH. Barley plants were grown on soils spiked with arsenate (0-360 mg As kg(-1)) to investigate the effect on plant growth and P uptake. As arsenic concentration increased, above ground plant yield decreased and the plants showed symptoms typical of As toxicity and P deficiency. At low As additions to the soil, uptake of As and P by barley increased. At higher As additions P uptake decreased. It is argued that this was due to the change in As:P ratio in the soil solution. It is concluded that input of arsenic to the soil could mobilise phosphate. Crop yield is likely to be affected, either due to reduced phosphate availability at low arsenic additions or arsenic toxicity at higher additions.
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.
Resumo:
The elemental composition of residues of maize (Zea mays), sorghum (S. bicolor), groundnuts (Arachis hypogea), soya beans (Glycine max), leucaena (L. leucocephala), gliricidia (G. sepium), and sesbania (S. sesban) was determined as a basis for examining their alkalinity when incorporated into an acidic Zambian Ferralsol. Potential (ash) alkalinity, available alkalinity by titration to pH 4 and soluble alkalinity (16 It water extract titrated to pH 4) were measured. Potential alkalinity ranged from 3 73 (maize) to 1336 (groundnuts) mmol kg(-1) and was equivalent to the excess of their cation charge over inorganic anion charge. Available alkalinity was about half the potential alkalinity. Cations associated with organic anions are the source of alkalinity. About two thirds of the available alkalinity is soluble. Residue buffer curves were determined by titration with H2SO4 to pH 4. Soil buffer capacity measured by addition of NaOH was 12.9 mmol kg(-1) pH(-1). Soil and residue (10 g:0.25 g) were shaken in solution for 24 h and suspension pH values measured. Soil pH increased from 4.3 to between 4.6 (maize) and 5.2 (soyabean) and the amounts of acidity neutralized (calculated from the rise in pH and the soil buffer capacity) were between 3.9 and 11.5 mmol kg(-1), respectively. The apparent base contributions by the residues (calculated from the buffer curves and the fall in pH) ranged between 105 and 350 mmol kg(-1) of residue, equivalent to 2.6 and 8.8 mmol kg(-1) of soil, respectively. Therefore, in contact with soil acidity, more alkalinity becomes available than when in contact with H2SO4 solution. Available alkalinity (to pH 4) would be more than adequate to supply that which reacts with soil but soluble alkalinity would not. It was concluded that soil Al is able to displace cations associated with organic anions in the residues which are not displaced by H+, or that residue decomposition may have begun in the soil suspension releasing some of the non-available alkalinity. Soil and four of the residues were incubated for 100 days and changes in pH, NH4+ and NO3- concentrations measured. An acidity budget equated neutralized soil acidity with residue alkalinity and base or acid produced by N transformations. Most of the potential alkalinity of soyabean and leucaena had reacted after 14 days, but this only occurred after 100 days for gliricidia, and for maize only the available alkalinity reacted. For gliricidia and leucaena, residue alkalinity was primarily used to react with acidity produced by nitrification. Thus, the ability of residues to ameliorate acidity depends not only on their available and potential alkalinity but also on their potential to release mineral N. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Water quality models generally require a relatively large number of parameters to define their functional relationships, and since prior information on parameter values is limited, these are commonly defined by fitting the model to observed data. In this paper, the identifiability of water quality parameters and the associated uncertainty in model simulations are investigated. A modification to the water quality model `Quality Simulation Along River Systems' is presented in which an improved flow component is used within the existing water quality model framework. The performance of the model is evaluated in an application to the Bedford Ouse river, UK, using a Monte-Carlo analysis toolbox. The essential framework of the model proved to be sound, and calibration and validation performance was generally good. However some supposedly important water quality parameters associated with algal activity were found to be completely insensitive, and hence non-identifiable, within the model structure, while others (nitrification and sedimentation) had optimum values at or close to zero, indicating that those processes were not detectable from the data set examined. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.
Resumo:
Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases.
Resumo:
Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers’ awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers’ management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.
Resumo:
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664-2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96 degrees C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.
Resumo:
1. Changes in the frequency of extreme events, such as droughts, may be one of the most significant impacts of climate change for ecosystems. Models predict more frequent summer droughts in much of England: this paper investigates the impact on different types of plants in an ex-arable grassland community. 2. A long-term experiment simulated increased and decreased summer precipitation. Substantial interannual variation allowed the effects of summer drought to be tested in combination with wet and dry weather in other seasons. This is important, as climate models predict increased winter precipitation. 3. Total cover abundance in early summer increased with increasing water supply in the previous summer; there was no effect of winter precipitation. Productivity is therefore likely to decrease with more frequent summer droughts, with no mitigating effect of wetter winters. 4. The percentage cover of perennial grasses declined during a natural drought in 1995-97; this was exacerbated by the experimental drought treatment and reduced by supplemented rainfall. Simultaneously, short-lived ruderal species increased; this was greatest in drought treatments and least with supplemented rainfall. 4. These trends were subsequently reversed during several years of unusually wet weather, with perennial grasses increasing and short-lived forbs decreasing. This occurred even in experimentally droughted plots, and we propose that it resulted from rapid coverage of gaps during wet autumns and winters. 6. Deep-rooted species generally proved to be more drought resistant, but there were exceptions. 7. We conclude that increased frequency of summer droughts could have serious implications for the establishment and successional development of ex-arable grasslands. Increased winter precipitation would moderate the impact on species composition, but not on productivity.
Resumo:
Tannins can cause beneficial or harmful nutritional effects, but their great diversity has until now prevented a rational distinction between tannin structures and their nutritional responses. An attempt has been made to study this problem by examining the octanol-water solubilities of tannins. A relatively simple HPLC method has been developed for screening mixtures of plant tannins for their octanol-water partition coefficients (K-ow coefficients). Tannins were isolated from the fruits and leaves of different Acacia, Calliandra, Dichrostachys, and Piliostigma species, which are known to produce beneficial or harmful effects. The K-ow coefficients of these tannins ranged from 0.061 to 13.9, average coefficients of variation were 9.2% and recoveries were 107%. Acacia nilotica fruits and leaves had the highest K-ow coefficients, that is, 2.0 and 13.9, respectively. These A. nilotica products also have high concentrations of tannins. The combined effects of high octanol solubilities and high tannin concentrations may explain their negative effects on animal nutrition and health. It is known that compounds with high octanol solubilities are more easily absorbed into tissues, and it is, therefore, proposed that such compounds are more likely to cause toxicity problems especially if consumed in large quantities. According to the literature, tannins in human foods tend to have low K-ow coefficients, and this was confirmed for the tannins in Piliostigma thonningii fruits. Therefore, unconventional feeds or browse products should be screened not only for their tannin concentrations but also for low octanol-water partition coefficients in order to identify nutritionally safe feeds and to avoid potentially toxic feeds.
Resumo:
Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.