896 resultados para Phosphate Loading
Resumo:
AimTo evaluate prospectively the clinical and radiographic outcomes after 2 years of loading of 6 mm long moderately rough implants supporting single crowns in the posterior regions.Material and methodsForty SLActive Straumann (R) short (6 mm) implants were placed in 35 consecutively treated patients. Nineteen implants, 4.1 mm in diameter, and 21 implants, 4.8 mm in diameter, were installed. Implants were loaded after 6 weeks of healing. Implant survival rate, marginal bone loss and resonance frequency analysis (RFA) were evaluated at different intervals. The clinical crown/implant ratio was also calculated.ResultsTwo out of 40 implants were lost before loading. Hence, the survival rate before loading was 95%. No further technical or biological complications were encountered during the 2-year follow-up. The mean marginal bone loss before loading was 0.34 +/- 0.38 mm. After loading, the mean marginal bone loss was 0.23 +/- 0.33 and 0.21 +/- 0.39 mm at the 1- and 2-year follow-ups. The RFA values increased between insertion (70.2 +/- 9) and the 6-week evaluation (74.8 +/- 6.1). The clinical crown/implant ratio increased with time from 1.5 at the delivery of the prosthesis to 1.8 after 2 years of loading.ConclusionShort implants (6 mm) with a moderately rough surface loaded early (after 6 weeks) during healing yielded high implant survival rates and moderate loss of bone after 2 years of loading. Longer observation periods are needed to draw more definite conclusions on the reliability of short implants supporting single crowns.To cite this article:Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study.Clin. Oral Impl. Res. 21, 2010; 937-943.doi: 10.1111/j.1600-0501.2010.01942.x.
Resumo:
Co-inoculation of the fungus Aspergillus niger and the bacterium Burkholderia cepacia was undertaken to understand the interaction between different species of phosphate-solubilizing microorganisms (PSM). PSM were inoculated in a single or mixed (A. nigerB.similar to cepacia) culture. During 9 similar to days of incubation, microbial biomass was enhanced, accompanied with increases in the levels of soluble phosphate and titratable acidity, as well as increased acid phosphatase activity. Production of acids and levels of phosphate solubilization were greater in the co-culture of A.similar to nigerB.similar to cepacia than in the single culture. The quantity of phosphate solubilized by the co-culture ranged from 40.51 +/- 0.60 to 1103.64 +/- 1.21 similar to mu g similar to PO4 3-similar to mL-1 and was 922% higher than single cultures. pH of the medium dropped from 7.0 to 3.0 in the A.similar to niger culture, 3.1 in the co-culture, and 4.2 in the B.similar to cepacia culture. on the third day of postinoculation, acid production by the co-culture (mean 5.40 +/- 0.31 similar to mg NaOH mL-1) was 1990% greater than single cultures. Glucose concentration decreased almost completely (9799% of the starting concentration) by the ninth day of the incubation. These results show remarkable synergism by the co-culture in comparison with single cultures in the solubility of CaHPO4 under in vitro conditions. This synergy between microorganisms can be used in poor available phosphate soils to enhance phosphate solubilization.
Resumo:
In order to determine conditions that may provide greater solubilization of insouluble phosphate, the fungus Aspergillus niger was grown in a stationary culture containing modified citrate medium supplemented with 800 mg fluorapatite per litre. Solubilization of insouluble phosphate increased with fungal growth, reaching a maximum after 11 days of culture. Soluble phosphate levels were correlated with pH of the culture medium but not with titratable acidity values, probably due to the metabolic activity of the fungus resulting from consumption of sugar in the culture medium. Fructose, glucose, xylose, and sucrose were the carbohydrates that favoured fluorapatite solubilization the most when compared with galactose and maltose. Although increasing fructose concentrations in the culture medium favoured mycelial growth, increased total acidity and a fall in pH, soluble phosphate levels were reduced, probably owing to consumption by the rapidly growing fungus. Among the nitrogen sources tested, ammonium salts favoured the production of larger amounts of soluble phosphate than organic nitrogen (peptone or urea) or nitrate, corresponding to the lowest pH and highest titratable acidity values obtained. © 1988 Springer-Verlag.
Resumo:
The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylating phenotype and 18 (46.16%) a fast acetylating phenotype. Glucose-6-phosphate-dehydrogenase (G6PD) activity was decreased in 5(23.80%) slow acetylators and in 4 (22.22%) fast acetylators. Glutathione reductase activity was decreased in 14 (66.66%) slow acetylators and in 12(66.66%) fast acetylators. Serum levels of free and total sulfadoxin were higher in slow acetylator (p _ 0.02). Analysis of the results permitted us to conclude that serum sulfadoxin levels are related to the acetylator phenotype. Furthermore, sulfadoxin levels were always above 50 μg/ml, a value considered therapeutic. Glutathione reductase deficiency observed in 66% of patients may be related to the intestinal malabsorption of nutrients, among them riboflavin, a FAD precursor vitamin, in patients with paracoceidioidomycosis.
Resumo:
Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Resumo:
Forty two soil isolates (31 bacteria and 11 fungi) were studied for their ability to solubilize rock phosphate and calcium phosphate in culture medium. Eight bacteria and 8 fungi possessed solubilizing ability. Pseudomonas cepacia and Penicillium purpurogenum showed the highest activity. There was a correlation between final pH value and titratable acidity (r = - 0.29 to -0.87) and between titratable acidity and soluble phosphate (r = 0.22 to 0.99). Correlation values were functions of insoluble phosphate and of the group of microorganisms considered. A high correlation was observed between final pH and soluble phosphate only for the rock phosphates inoculated with the highest concentration of solubilizing bacteria (r = -0.73 to -0.98).
Resumo:
Cellulose phosphate (CELLPHOS) was studied as a collector for analytical preconcentration of traces of Cd(II), Cr(III), Cu(II) and Ni(II) from aqueous sample solution. It has been proved that using chromatographic columns packed with CELLPHOS for preconcentration and 1.0 mol 1 -1 HCl for elution the adsorbed analytes are quantitatively enriched. An enrichment factor of 20 (100 ml sample, 5 ml concentrate) was achieved by this separation procedure, which was applied to a series of water analyses (river, sea, bog water).
Resumo:
Measurements of plasma cholinesterase (pl.ChE), brain cholinesterase (Br.ChE) and brain Neuropathy Target Esterase (Br.NTE) were made in three different lineages of chickens. All birds received toxicants through gavage in a single oral dose between 08:00 and 09:00 h, after overnight fast. Babcock chickens were treated with 800 mg/kg tri-ortho-cresyl phosphate (TOCP) or 80 mg/kg trichlorfon. The TOCP group had 82% Br.NTE inhibition, when compared to the control group, and no birds displayed symptoms of clinical organophosphate-induced delayed neuropathy (OPIDN). Hy-line w36 lineage chickens were given 1600 mg/kg TOCP and despite this higher dose, Br.NTE inhibition was similar that presented by Babcock chickens. Isabrown chickens were given 1600 mg/kg TOCP or 80 mg/kg trichlorfon. At 36 h all trichlorfon treated birds had from 80 to 90% inhibition of Pl.ChE and Br.ChE, when compared to controls. However, Br.NTE was inhibited less than 20%, and there were no clinical signs of OPIDN. All TOCP treated isabrown chickens had more than 80% Br.NTE inhibition while one of them exhibited just light signs of OPIDN, two chickens became totally paralyzed. This finding suggested that chicken strain was important in the appearance of OPIDN. In addition, 70-80% of NTE inhibition was necessary but was not sufficient to produce OPIDN in chickens, since babcock and hy-line w36 chickens exhibited NTE inhibition in the range of 70-80% without clinical signs of OPIDN. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
In this communication, we show that the growth of isolate H6 of the dermatophyte Trichophyton rubrum on non-buffered medium and under saturating phosphate conditions is dependent on the initial growth pH, with an apparent optimum at pH 4.0. In addition, irrespective of the initial growth pH, the pH of the medium altered during cultivation reaching values that ranged from 8.3 to 8.9. Furthermore, this isolate synthesized and secreted almost the same levels of an alkaline phosphatase with an apparent optimum pH ranging from 9.0 to 10.0 when grown on both low- and high-phosphate medium. Also, this alkaline phosphatase is activated by Mg2+ and is EDTA-sensitive. On the other hand, the very low levels of the enzyme retained by the mycelium grown on buffered medium at pH 5.0-5.2 suggest that this enzyme is encoded by an alkaline gene, i.e., a gene responsive to ambient pH signaling.
Resumo:
A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.
Resumo:
This paper presents an alternative methodology for loading margin improvement and total real power losses reduction by using a continuation method. In order to attain this goal, a parameterizing equation based on the total real power losses and the equations of the reactive power at the slack and generation buses are added to the conventional power flow equations. The voltages at these buses are considered as control variables and a new parameter is chosen to reduce the real power losses in the transmission lines. The results show that this procedure leads to maximum loading point increase and consequently, in static voltage stability margin improvement. Besides, this procedure also takes to a reduction in the operational costs and, simultaneously, to voltage profile improvement. Another important result of this methodology is that the resulting operating points are close to that provided by an optimal power flow program. © 2004 IEEE.
Resumo:
Probe-beam deflection (PBD) was used to monitor concentration gradients of anions adjacent to the surface of a platinum electrode in acidic aqueous media containing H3PO4. PBD can measure the potential-dependent extent of adsorption of H2PO4- on the Pt electrode surface and permits the Langmuir isotherm to be fitted to the experimental data. The value thus obtained for the surface concentration was 1.3 × 10-11 mol mm -2, or 1.7 atoms of Pt per H2PO4-. Also, the electron transfer number obtained was 0.24, signifying an incomplete transfer of charge, and the equilibrium constant is 1.80 suggesting a reversible adsorption process. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.
Resumo:
The general concept that low-water-soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)-P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)-potassium (K)-P compounds present in superphosphates [Fe 3 KH 8 (PO 4 ) 6·6H 2 O, H8, and Fe 3 KH 14 (PO 4 ) 8·4H 2 O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg -1 as neutral ammonium citrate (NAC)+H 2 O-soluble P. Reagent-grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg -1 included. Also, mixtures of both Fe-K-P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg -1 ) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water-soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low-water-soluble P source cannot be deemed as ineffective at high soil pH. Copyright © Taylor & Francis Group, LLC.