967 resultados para Phase-Transformations
Resumo:
We show that the results of Lüty and Ortiz-Lopez relating the cyanide reorientation rates to the high-temperature phase diagrams of alkali-halide-alkali-cyanide mixed crystals can be understood within simple mean-field theory.
Resumo:
The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).
Resumo:
We report three prominent observations made on the nanoscale charge ordered ( CO) manganites RE(1-x)AE(x)MnO(3) (RE = Nd, Pr; AE = Ca; x = 0.5) probed by temperature dependent magnetization and magneto-transport, coupled with electron magnetic/paramagnetic resonance spectroscopy (EMR/EPR). First, evidence is presented to show that the predominant ground state magnetic phase in nanoscale CO manganites is ferromagnetic and it coexists with a residual anti-ferromagnetic phase. Secondly, the shallow minimum in the temperature dependence of the EPR linewidth shows the presence of a charge ordered phase in nanoscale manganites which was shown to be absent from the DC static magnetization and transport measurements. Thirdly, the EPR linewidth, reflective of spin dynamics, increases significantly with a decrease of particle size in CO manganites. We discuss the interesting observations made on various samples of different particle sizes and give possible explanations. We have shown that EMR spectroscopy is a highly useful technique to probe the 'hindered charge ordered phase' in nanoscale CO manganites, which is not possible by static DC magnetization and transport measurements.
Resumo:
Einstein's gravitational field is non-minimally coupled to a self-interacting scalar field in the presence of radiation. Such a theory can give rise to a phase transition associated with a change of sign of the gravitational “constant”. In our approach, the criterion for stability is formulated in terms of an effective potential, the phase-transition takes place due to temperature dependence of the scalar self-interaction coupling constant.
Resumo:
Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.
Resumo:
Recent experiments in this laboratory on structural transformations caused by controlled dehydration of protein crystals have been reviewed. X-ray diffraction patterns of the following crystals have been examined under varying conditions of environmental humidity in the relative humidity range of 100-75%: a new crystal form of bovine pancreatic ribonuclease A grown from acetone solution in tris buffer (I), the well-known monoclinic form of the protein grown from aqueous ethanol (II), the same form grown from a solution of 2-methyl pentan-2,4-diol in phosphate buffer (III), tetragonal (IV), orthorhombic (V), monoclinic (VI) and triclinic (VII) hen egg white lysozyme, porcine 2 Zn insulin (VIII), porcine 4 Zn insulin (IX) and the crystals of concanavalin A(X). I, II, IV, V and VI undergo one or more transformations as evidenced by discontinuous changes in the unit cell dimensions, the diffraction pattern and the solvent content. Such water-mediated transformations do not appear to occur in the remaining crystals in the relative humidity range explored. The relative humidity at which the transformation occurs is reduced when 2-methyl pentan-2,4-diol is present in the mother liquor. The transformations are affected by the crystal structure but not by the amount of solvent in the crystals. The X-ray investigations reviewed here and other related investigations emphasize the probable importance of water-mediated transformations in exploring hydration of proteins and conformational transitions in them.
Resumo:
The high temperature phase transformation of hydrazonium sulfate, N2H6SO4 has been studied using DSC. The enthalpy of phase transition is found to be 3.63 ± 0.1 kJ mole−1. The phase transition temperature is found to decrease with the increase of particle size. It appears that the strain energy and not surface energy, is responsible for the phase transformation. The molar volume of the salt increases during the transformation as found by the dilatometric experiment involving percentage of linear thermal expansion. On cooling, the transformation from the high temperature modification to orthorhombic form is incomplete and extends over a wide range of temperature.
Resumo:
This work examines the urban modernization of San José, Costa Rica, between 1880 and 1930, using a cultural approach to trace the emergence of the bourgeois city in a small Central American capital, within the context of order and progress. As proposed by Henri Lefebvre, Manuel Castells and Edward Soja, space is given its rightful place as protagonist. The city, subject of this study, is explored as a seat of social power and as the embodiment of a cultural transformation that took shape in that space, a transformation spearheaded by the dominant social group, the Liberal elite. An analysis of the product built environment allows us to understand why the city grew in a determined manner: how the urban space became organized and how its infrastructure and services distributed. Although the emphasis is on the Liberal heyday from 1880-1930, this study also examines the history of the city since its origins in the late colonial period through its consolidation as a capital during the independent era, in order to characterize the nineteenth century colonial city that prevailed up to 1890 s. A diverse array of primary sources including official acts, memoirs, newspaper sources, maps and plans, photographs, and travelogues are used to study the initial phase of San Jose s urban growth. The investigation places the first period of modern urban growth at the turn of the nineteenth century within the prevailing ideological and political context of Positivism and Liberalism. The ideas of the city s elite regarding progress were translated into and reflected in the physical transformation of the city and in the social construction of space. Not only the transformations but also the limits and contradictions of the process of urban change are examined. At the same time, the reorganization of the city s physical space and the beginnings of the ensanche are studied. Hygiene as an engine of urban renovation is explored by studying the period s new public infrastructure (including pipelines, sewer systems, and the use of asphalt pavement) as part of the Saneamiento of San José. The modernization of public space is analyzed through a study of the first parks, boulevards and monuments and the emergence of a new urban culture prominently displayed in these green spaces. Parks and boulevards were new public and secular places of power within the modern city, used by the elite to display and educate the urban population into the new civic and secular traditions. The study goes on to explore the idealized image of the modern city through an analysis of European and North American travelogues and photography. The new esthetic of theatrical-spectacular representation of the modern city constructed a visual guide of how to understand and come to know the city. A partial and selective image of generalized urban change presented only the bourgeois facade and excluded everything that challenged the idea of progress. The enduring patterns of spatial and symbolic exclusion built into Costa Rica s capital city at the dawn of the twentieth century shed important light on the long-term political social and cultural processes that have created the troubled urban landscapes of contemporary Latin America.
Resumo:
Results of Raman spectroscopic studies of (NH4)2ZnBr4 crystal in the spectral range from 20-250 cm-1 and over a range of temperature from 90K to 440K covering the low temperature ferroelectric and high temperature incommensurate phases are presented. The plots of the integrated areas and peak heights of the strong Raman lines versus temperature show anomalous behaviour near the two phase transitions.
Resumo:
Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 + xNd2/3TiO 3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions with x < 0.3. Nd2Ti207 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature with x -- 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics with x > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti207 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd 3+ substitution. The absence of structural intergrowth in (1 - x)BaTiO3 + xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 < x < 0.3 have ~eff >~ 104 with tan 6 < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of ee,, variations of ~eff and tan 6 with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in eeff and rise in tan 3, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.
Resumo:
A two-state Ising model has been applied to the two-dimensional condensation of tymine at the mercury-water interface. The model predicts a quadratic dependence of the transition potential on temperature and on the logarithm of the adsorbate concentration. Both predictions have been confirmed experimentally.
Resumo:
The detailed electronic structure of the n-v addition compound H2O·BF3 has been investigated for the first time by a combined use of electron energy loss spectroscopy (EELS) and UV photoelectron spectroscopy (UPS) augmented by MO calculations. The calculated molecular orbital energies of H2O·BF3 agree well with the UPS results and have been used to assign the electronic transitions obtained from EELS and to construct an orbital correlation diagram. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
The goal of this article is to provide a new design framework and its corresponding estimation for phase I trials. Existing phase I designs assign each subject to one dose level based on responses from previous subjects. Yet it is possible that subjects with neither toxicity nor efficacy responses can be treated at higher dose levels, and their subsequent responses to higher doses will provide more information. In addition, for some trials, it might be possible to obtain multiple responses (repeated measures) from a subject at different dose levels. In this article, a nonparametric estimation method is developed for such studies. We also explore how the designs of multiple doses per subject can be implemented to improve design efficiency. The gain of efficiency from "single dose per subject" to "multiple doses per subject" is evaluated for several scenarios. Our numerical study shows that using "multiple doses per subject" and the proposed estimation method together increases the efficiency substantially.
Resumo:
Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4•6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature ( 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.