997 resultados para Petrology.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or olivine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from < 100 A to a few hundred A. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystallinity of saponite. By contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of A thick. The Si/(Si + A1) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe + Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+A1) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite ± mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CIPWFULL is a user-friendly, stand-alone FORTRAN software program that is designed to calculate the comprehensive CIPW normative mineral composition of igneous rocks and strictly adheres to the original formulation of the CIPW protocol. This faithful adherence alleviates inaccuracies in normative mineral calculations by programs commonly used by petrologists. Additionally, several of the most important petrological and mineralogical parameters of igneous rocks are calculated by the program. Along with all the regular major oxide elements, all the significant minor elements whose contents can potentially effect the CIPW normative mineral composition are included. CIPWFULL also calculates oxidation ratios for igneous rock samples that have only one oxidation state of iron reported in the specimen analysis. It also provides an option for normalization of analyses to unity on a hydrous-free basis in order to facilitate comparison of norms among rock groups. Other capabilities of the program cater for rare situations, like the presence of cancrinite or exclusion from the norm calculation of rare rocks like carbonatite. Several mineralogical, petrological and discriminatory parameters and indexes are additionally calculated by the CIPWFULL program. The CIPWFULL program is very efficient and flexible and allows for a user-defined free-format input of all the chemical species, and it permits feeding of minor elements as parts per million or oxide percentages. Results of calculations are printed in a formatted ASCII text file and may be optionally casted into a space-delimited text files that are ready to be imported to general spreadsheet programs. CIPWFULL is DOS-based and is implemented on WINDOWS and mainframe platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent the petrology and weathering conditions in the sediment source areas. Here, we combine both methods to investigate Late Quaternary marine sediments from five cores along a transect across the continental slope off Senegal. This region near the modern summer Intertropical Convergence Zone is particularly sensitive to climate change and receives sediments from several aeolian, fluvial and marine sources. From each of the investigated five GeoB sediment cores (494-2956 m water depth) two time slices were processed which represent contrasting climatic conditions: the arid Heinrich Stadial 1 (~ 15 kyr BP) and the humid Mid Holocene (~ 6 kyr BP). Each sediment sample was split into 16 grain-size fractions ranging from 1.6 to 500 µm. Concentration and grain-size indicative magnetic parameters (susceptibility, SIRM, HIRM, ARM and ARM/IRM) were determined at room temperature for each of these fractions. The joint consideration of whole sediment and magnetic mineral grain-size distributions allows to address several important issues: (i) distinction of two aeolian sediment fractions, one carried by the north-easterly trade winds (40-63 µm) and the other by the overlying easterly Harmattan wind (10-20 µm) as well as a fluvial fraction assigned to the Senegal River (< 10 µm); (ii) identification of three terrigenous sediment source areas: southern Sahara and Sahel dust (low fine-grained magnetite amounts and a comparatively high haematite content), dust from Senegalese coastal dunes (intermediate fine-grained magnetite and haematite contents) and soils from the upper reaches of the Senegal River (high fine-grained magnetite content); (iii) detection of partial diagenetic dissolution of fine magnetite particles as a function of organic input and shore distance; (iv) analysis of magnetic properties of marine carbonates dominating the grain-size fractions 63-500 µm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement of Bougainville Guyot drilled at Site 831 consists of andesitic hyalobreccias derived from a submarine arc volcano. The volcanic sequence has been dated by K/Ar at approximately 37 Ma. The 121 m of andesitic hyalobreccias drilled in Hole 831B have been divided into five subunits of two types: one appears to be primary, and the other contains evidence of reworking and a subaerial clastic input. Variations are attributed to fluctuations in water depth. The distinctive hyalobreccias consist of andesitic blebs with chilled margins and peripheral fractures set in a chaotic greenish matrix that is mainly altered glass, with crystals similar to those in the blebs or clasts. Their formation is attributed to violent reaction of andesitic magma discharged into seawater, in perhaps the submarine equivalent of fire-fountaining. There was limited reworking by currents and debris flows on the flanks of the submarine volcano. The andesite shows no significant compositional variation in phenocryst phases throughout the drilled sequence and contains phenocrysts of plagioclase (An88-43), clinopyroxene (Ca44Mg46Fe10-Ca41Mg40Fe19), orthopyroxene (Ca4Mg79Fe17-Ca3Mg58Fe39), and titanomagnetite. There is a systematic change in volcanic composition with height in the section, from more mafic andesites at the base, to overlying more acid andesites, and strong evidence exists that magma mixing may have played a significant role in the genesis of these lavas. The andesites have affinities with the low-K arc tholeiite series. Trace element and isotopic systematics for these rocks indicate very minor involvement of a LILE- and 87Sr-enriched slab-derived fluid in their petrogenesis. This accords with the previous suggestion that Bougainville Guyot forms part of an Eocene proto-island arc developed along the southern side of the d'Entrecasteaux Zone, above a southward-dipping subduction zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O.We have compiled and evaluated thermodynamic data for Fe-Ni-Co-O-S phases and computed phase relations in fO2,g-fS2,g and aH2,aq-aH2S,aq diagrams for temperatures between 150 and 400°C at 50MPa.We use the relations and compositions of Fe-Ni-Co-O-S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20'N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite- magnetite-pentlandite and heazlewoodite-magnetite-pentlandite assemblages forming in the early stages of serpentinization to millerite-pyrite-polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that highsulfur-fugacity sulfides, such as polydymite and pyrite-vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g-fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe-Ni-Co-O-S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite- awaruite-magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 159, four sites (Sites 959-962) were drilled along a depth transect on the Côte d'Ivoire/Ghana Transform Margin. In this study, the Pliocene-Pleistocene history of carbonate and organic carbon accumulation at Hole 959C is reconstructed for the eastern equatorial Atlantic off the Ivory Coast/Ghana based on bulk carbonate, sand fraction, organic carbon, and other organic geochemical records (d13Corg, marine organic matter percentages derived from organic petrology, hydrogen index, C/N). Pliocene-Pleistocene sedimentation off the Ivory Coast/Ghana was strongly affected by low mean sedimentation rates, which are attributed to persistently enhanced bottom-water velocities related to the steep topography of the transform margin. Sand fraction and bulk carbonate records reveal typical glacial/interglacial cycles, preserved, however, with low time resolution. Intermediate carbonate accumulation rates observed throughout the Pliocene-Pleistocene suggest intense winnowing and sediment redistribution superimposed by terrigenous dilution. 'Atlantic-type' sand and carbonate cycles, consistent with records from pelagic areas of the eastern equatorial Atlantic, are encountered at Hole 959C prior to about 0.9 Ma. Total organic carbon (TOC) records are frequently inversely correlated to carbonate contents, indicating mainly productivity-driven carbonate dissolution related to changes in paleoproductivity. During Stages 22-24, 20, 16, 12, 8, and 4, sand and carbonate records reveal a 'Pacific-type' pattern, showing elevated contents during glacials commonly in conjunction with enhanced TOC records. Formation of 'Pacific-type' patterns off the Ivory Coast/Ghana is attributed to drastically increased bottom-water intensities along the transform margin in accordance with results reported from the Walvis Ridge area. Short-term glacial/interglacial changes in paleoproductivity off the Ivory Coast/Ghana are to some extend recognizable during glacials prior to 1.7 Ma and interglacial Stages 21, 19, 13, 9, and 1. Enhanced coastal upwelling during interglacials is attributed to local paleoclimatic and oceanographic conditions off the Ivory Coast/Ghana. Quantitative estimates of marine organic carbon based on organic petrologic and d13Corg records reveal an offset in concentration ranging from 15% to 60%. Highest variabilities of both records are recorded since ~0.9 Ma. Discrepancies between the isotopic and microscopic records are attributed to an admixture of C4 plant debris approaching the eastern equatorial Atlantic via atmospheric dust. Terrestrial organic material likely originated from the grass-savannah-covered Sahel zone in central Africa. Estimated C4 plant concentrations and accumulation rates range from 10% to 37% and from almost zero to 0.006 g/cm**2/k.y., respectively. The strongest eolian supply to the northern Gulf of Guinea is indicated between 1.9 and 1.68 Ma and during glacial isotopic Stages 22-24, 20, 14, and 12. The presence of grass-type plant debris is further supported by organic petrologic studies, which reveal well-preserved cell tissues of vascular plants or tube-shaped, elongated terrestrial macerals showing different levels of oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical records of the last 940 kyr are presented for equatorial Atlantic Ocean Drilling Program (ODP) sites 663 and 664 and discussed with regard to the development of ocean productivity and African paleoclimate. Proportions of marine and terrigenous organic matter (OM) are estimated from elemental, pyrolytic, isotopic, and petrologic data. Spectral analyses reveal a strong power at the eccentricity and obliquity band, indicating a close response of tropical organic sedimentation to the climatic evolution at high latitudes. The orbital covariance of organic carbon with biogenous opal and terrigenous records favor that glacially enhanced dust supply and surface water mixing were primary controls for deposition of organic carbon. Wind-borne supply of terrigenous OM contributes 26 to 55% and 0 to 39% to the bulk OM based on microscopic and isotopic records, respectively. Admixture of C4 plant matter was approximated to contribute up to 16% to the bulk organic fraction during peak glacial conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic petrologic and geochemical analyses were performed on modern and Quaternary organic carbon-poor deep sea sediments from the Equatorial Atlantic. The study area covers depositional settings from the West African margin (ODP Site 959) through the Equatorial Divergence (ODP Site 663) to the pelagic Equatorial Atlantic. Response of organic matter (OM) deposition to Quaternary climatic cycles is discussed for ODP Sites 959 and 663. The results are finally compared to a concept established for fossil deep sea environments [Littke and Sachsenhofer, 1994 doi:10.1021/ef00048a041]. Organic geochemical results obtained from Equatorial Atlantic deep sea deposits provide new aspects on the distribution of sedimentary OM in response to continental distance, atmospheric and oceanographic circulation, and depositional processes controlling sedimentation under modern and past glacial-interglacial conditions. The inventory of macerals in deep sea deposits is limited due to mechanical breakdown of particles, degree of oxidation, and selective remineralization of labile (mostly marine) OM. Nevertheless, organic petrology has a great potential for paleoenvironmental studies, especially as a proxy to assess quantitative information on the relative abundance of marine vs. terrigenous OM. Discrepancies between quantitative data obtained from microscopic and isotopic (delta13Corg) analyses were observed depending on the stratigraphic level and depositional setting. Strongest offset between both records was found close to the continent and during glacial periods, suggesting a coupling with wind-born terrigenous OM from central Africa. Since African dust source areas are covered by C4 grass plants, supply of isotopically heavy OM is assumed to have caused the difference between microscopic and isotopic records.