930 resultados para Petroleum reserves
Resumo:
Item 1005-C
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"September 18, 1986"--pt. 2.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The purpose of this study is to create a petroleum system model and to assess whether or not the La Luna Formation has potential for unconventional exploration and production in the Middle Magdalena Valley Basin (MMVB), Colombia. Today, the Magdalena River valley is an intermontane valley located between the Central and Eastern Cordillera of Colombia. The underlying basin, however, represents a major regional sedimentary basin that received deposits from the Triassic through the Cenozoic. In recent years Colombia has been of great exploration interest because of its potentially vast hydrocarbon resources, existing petroleum infrastructure, and skilled workforce. Since the early 1900s when the MMVB began producing, it has led to discoveries of 1.9 billion barrels of oil (BBO) and 2.5 trillion cubic feet (Tcf) of gas (Willatt et al., 2012). Colombia is already the third largest producer of oil in South America, and there is good potential for additional unconventional exploration and production in the Cretaceous source rocks (Willatt et al., 2012). Garcia Gonzalez et al. (2009) estimate the potential remaining hydrocarbons in the La Luna Formation in the MMVB to be between 1.15 and 10.33 billion barrels of oil equivalent (BBOE; P90 and P10 respectively), with 2.02 BBOE cumulative production to date. Throughout the 1900s and early 2000s, Cenozoic continental and transitional clastic reservoirs were the primary exploration interest in the MMVB (Dickey, 1992). The Cretaceous source rocks, such as the La Luna Formation, are now the target for unconventional exploration and production. In the MMVB, the La Luna formation is characterized by relatively high total organic carbon (TOC) values, moderate maturity, and adequate thickness and depth (Veigal and Dzelalijal, 2014). The La Luna Formation is composed of Cenomanian-Santonian aged shales, marls, and limestones (Veigal and Dzelalijal, 2014). In addition to the in-situ hydrocarbons, the fractured limestones in the La Luna formation act as secondary reservoirs for light oil from other formations (Veigal and Dzelalijal, 2014). Thus the system can be considered more of a hybrid play, rather than a pure unconventional play. The Cretaceous source rocks of the MMVB exhibit excellent potential for unconventional exploration and production. Due to the complex structural nature of the MMVB, an understanding of the distribution of rocks and variations in rock qualities is essential for reducing risk in this play.
Resumo:
The Euro has been used as the largest weighting element in a basket of currencies for forex arrangements adopted by several Central European countries outside the European Union (EU). The paper uses a new time-series approach to examine the relationship between the Euro exchange rate and the level of foreign reserves. It employs Zero-no-zero (ZNZ) patterned vector error-correction (VECM) modelling to investigate Granger causal relations among foreign reserves, the European Monetary Union money supply and the Euro exchange rate. The findings confirm that foreign reserves may influence movements in the Euro's exchange rate. Further, ZNZ patterned VECM modelling with exogenous variables is used to estimate the amount of foreign reserves currently required in order to again achieve a targetted Euro exchange rate
Resumo:
We examine the question of the optimal number of reserves that should be established to maximize the persistence of a species. We assume that the mean time to extinction of a single population increases as a power of the habitat area, that there is a certain amount of habitat to be reserved, and that the aim is to determine how this habitat is most efficiently divided. The optimal configuration depends on whether the management objective is to maximize the mean time to extinction or minimize the risk of extinction. When maximizing the mean time to extinction, the optimal number of independent reserves does not depend on the amount of available habitat for the reserve system. In contrast, the risk of extinction is minimized when individual reserves are equal to the optimal patch size, making the optimal number of reserves linearly proportional to the amount of available habitat. A model that includes dispersal and correlation in the incidence of extinction demonstrates the importance of considering the relative rate at which these two factors decrease with distance between reserves. A small number of reserves is optimal when the mean time to extinction increases rapidly with habitat area or when risks of extinction are high.
Resumo:
Community-based coastal resource management has been widely applied within the Philippines. However, small-scale community-based reserves are often inefficient owing to management inadequacies arising because of a lack of local support or enforcement or poor design. Because there are many potential pitfalls during the establishment of even small community-based reserves, it is important for coastal managers, communities, and facilitating institutions to have access to a summary of the key factors for success. Reviewing relevant literature, we present a framework of lessons learned during the establishment of protected areas, mainly in the Philippines. The framework contains summary guidance on the importance of (1) an island location, (2) small community population size, (3) minimal effect of land-based development, (4) application of a bottom-up approach, (5) an external facilitating institution, (6) acquisition of title, (7) use of a scientific information database, (8) stakeholder involvement, (9) the establishment of legislation, (10) community empowerment, (11) alternative livelihood schemes, (12) surveillance, (13) tangible management results, (14) continued involvement of external groups after reserve establishment, and (15) small-scale project expansion. These framework components guided the establishment of a community-based protected area at Danjugan Island, Negros Occidental, Philippines. This case study showed that the framework was a useful guide that led to establishing and implementing a community-based marine reserve. Evaluation of the reserve using standard criteria developed for the Philippines shows that the Danjugan Island protected area can be considered successful and sustainable. At Danjugan Island, all of the lessons synthesized in the framework were important and should be considered elsewhere, even for relatively small projects. As shown in previous projects in the Philippines, local involvement and stewardship of the protected area appeared particularly important for its successful implementation. The involvement of external organizations also seemed to have a key role in the success of the Danjugan Island project by guiding local decision-makers in the sociobiological principles of establishing protected areas. However, the relative importance of each component of the framework will vary between coastal management initiatives both within the Philippines and across the wider Asian region.
Resumo:
Monitoring of marine reserves has traditionally focused on the task of rejecting the null hypothesis that marine reserves have no impact on the population and community structure of harvested populations. We consider the role of monitoring of marine reserves to gain information needed for management decisions. In particular we use a decision theoretic framework to answer the question: how long should we monitor the recovery of an over-fished stock to determine the fraction of that stock to reserve? This exposes a natural tension between the cost (in terms of time and money) of additional monitoring, and the benefit of more accurately parameterizing a population model for the stock, that in turn leads to a better decision about the optimal size for the reserve with respect to harvesting. We found that the optimal monitoring time frame is rarely more than 5 years. A higher economic discount rate decreased the optimal monitoring time frame, making the expected benefit of more certainty about parameters in the system negligible compared with the expected gain from earlier exploitation.
Resumo:
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to detect petroleum-derived spray oils (PDSOs) in citrus seedlings and trees. The NMR spectrum of the phantom containing 10% (v/v) of a nC24 agricultural mineral oil (AMO) showed the resonance of the water protons at delta = 5 ppm, while the resonance of the oil protons at delta = 1.3 to 1.7 ppm. The peak resolution and the chemical shift difference of more than 3.3 ppm between water and oil protons effectively differentiated water and the oil. Chemical shift selective imaging (CSSI) was performed to localize the AMO within the stems of Citrus trifoliata L. seedlings after the application of a 4% (v/v) spray. The chemical shift selective images of the oil were acquired by excitation at delta = 1.5 ppm by averaging over 400 transients in each phase-encoding step. Oil was mainly detected in the outer cortex of stems within 10 d of spray application; some oil was also observed in the inner vascular bundle and pith of the stems at this point. CSSI was also applied to investigate the persistence of oil deposits in sprayed mature Washington navel orange (Citrus x aurantium L.) trees in an orchard. The trees were treated with either fourteen 0.25%, fourteen 0.5%, four 1.75%, or single 7% sprays of a nC23 horticultural mineral oil (HMO) 12 to 16 months before examination of plant tissues by CSSI, and were still showing symptoms of chronic phytotoxicity largely manifested as reduced yield. The oil deposits were detected in stems of sprayed flushes and unsprayed flushes produced 4 to 5 months after the last spray was applied, suggesting a potential movement of the oil via phloem and a correlation of the persistence of oil deposit in plants and the phytotoxicity. The results demonstrate that MRI is an effective method to probe the uptake and localization of PDSOs and other xenobiotics in vivo in plants noninvasively and nondestructively.