913 resultados para Partial Least Squares


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study assess the quality of Cybersecurity as a service provided by IT department in corporate network and provides analysis about the service quality impact on the user, seen as a consumer of the service, and on the organization as well. In order to evaluate the quality of this service, multi-item instrument “SERVQUAL” was used for measuring consumer perceptions of service quality. To provide insights about Cybersecurity service quality impact, DeLone and McLean information systems success model was used. To test this approach, data was collected from over one hundred users from different industries and partial least square (PLS) was used to estimate the research model. This study found that SERVQUAL is adequate to assess Cybersecurity service quality and also found that Cybersecurity service quality positively influences the Cybersecurity use and individual impact in Cybersecurity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Economia Industrial e da Empresa

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kernel-Functions, Machine Learning, Least Squares, Speech Recognition, Classification, Regression

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The author proves that equation, Σy n ΣZx | ΣxyZx ΣxZx ΣxZ2x | = 0, Σy ΣZx Σy2x | where Z = 10-cq and q is a numerical constant, used by Pimentel Gomes and Malavolta in several articles for the interpolation of Mitscherlih's equation y = A [ 1 - 10 - c (x + b) ] by the least squares method, always has a zero of order three for Z = 1. Therefore, equation A Zm + A1Zm -1 + ........... + Am = 0 obtained from that determinant can be divided by (Z-1)³. This property provides a good test for the correctness of the computations and facilitates the solution of the equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photometric determination of ascorbic acid with the "E. E. L. portable colorimeter" can be carried" out rapid and conveniently using either 3% HPO3 or 0,4% (COOH) 2 as protective agent. The standards would contain from 2 to 20 micrograms of ascorbic acid per ml of metaphosphoric or oxalic acid solutions. We mix 10 ml of these solutions with 3 ml of the adequate citrate buffer solutions, and we pipet 5 ml of the resulting mixture to a matched test tube containing 5 ml of sodium - 2,6 - dichlorobenzenoneindophenol (80 mg per liter); then we shake well and after 15 seconds the extintion is read using green filter. The readings are subtracted from the blank one. Designating the differences by x and the concentrations of ascorbic acid/ml in the standards by y, we get, with the acid of the method of least squares, the following regression equations: for the metaphosphoric acid Y = 0,543x + 0,629 for the oxalic acid Y = 0,516x + 0,422, which permit, by interpolating, the determination of the ascorbic acid content in plant materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The parameterized expectations algorithm (PEA) involves a long simulation and a nonlinear least squares (NLS) fit, both embedded in a loop. Both steps are natural candidates for parallelization. This note shows that parallelization can lead to important speedups for the PEA. I provide example code for a simple model that can serve as a template for parallelization of more interesting models, as well as a download link for an image of a bootable CD that allows creation of a cluster and execution of the example code in minutes, with no need to install any software.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Republic of Haiti is the prime international remittances recipient country in the Latin American and Caribbean (LAC) region relative to its gross domestic product (GDP). The downside of this observation may be that this country is also the first exporter of skilled workers in the world by population size. The present research uses a zero-altered negative binomial (with logit inflation) to model households' international migration decision process, and endogenous regressors' Amemiya Generalized Least Squares method (instrumental variable Tobit, IV-Tobit) to account for selectivity and endogeneity issues in assessing the impact of remittances on labor market outcomes. Results are in line with what has been found so far in this literature in terms of a decline of labor supply in the presence of remittances. However, the impact of international remittances does not seem to be important in determining recipient households' labor participation behavior, particularly for women.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper demonstrates that an asset pricing model with least-squares learning can lead to bubbles and crashes as endogenous responses to the fundamentals driving asset prices. When agents are risk-averse they need to make forecasts of the conditional variance of a stock’s return. Recursive updating of both the conditional variance and the expected return implies several mechanisms through which learning impacts stock prices. Extended periods of excess volatility, bubbles and crashes arise with a frequency that depends on the extent to which past data is discounted. A central role is played by changes over time in agents’ estimates of risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study addresses the issue of the presence of a unit root on the growth rate estimation by the least-squares approach. We argue that when the log of a variable contains a unit root, i.e., it is not stationary then the growth rate estimate from the log-linear trend model is not a valid representation of the actual growth of the series. In fact, under such a situation, we show that the growth of the series is the cumulative impact of a stochastic process. As such the growth estimate from such a model is just a spurious representation of the actual growth of the series, which we refer to as a “pseudo growth rate”. Hence such an estimate should be interpreted with caution. On the other hand, we highlight that the statistical representation of a series as containing a unit root is not easy to separate from an alternative description which represents the series as fundamentally deterministic (no unit root) but containing a structural break. In search of a way around this, our study presents a survey of both the theoretical and empirical literature on unit root tests that takes into account possible structural breaks. We show that when a series is trendstationary with breaks, it is possible to use the log-linear trend model to obtain well defined estimates of growth rates for sub-periods which are valid representations of the actual growth of the series. Finally, to highlight the above issues, we carry out an empirical application whereby we estimate meaningful growth rates of real wages per worker for 51 industries from the organised manufacturing sector in India for the period 1973-2003, which are not only unbiased but also asymptotically efficient. We use these growth rate estimates to highlight the evolving inter-industry wage structure in India.