938 resultados para Parthenogenesis in plants
Resumo:
Millets are major food and feed sources in the developing world especially in the semi-arid tropical regions of Africa and Asia. The most widely cultivated millets are pearl millet [Pennisetum glaucum (L.) R. Br.], finger millet [Eleusine coracana (L.) Gaertn], foxtail millet [Setaria italica (L.) P. Beauvois], Japanese barnyard millet [Echinochloa esculneta (A. Braun) H. Scholz], Indian Barnyard millet [Echinochloa frumetacea Link], kodo millet [Paspalum scrobiculatum L.], little millet [Panicum sumatrense Roth.ex.Roem. & Schult.], proso millet [Panicum miliaceum L.], tef [Eragrostis tef (Zucc.) Trotter] and fonio or acha [Digitaria exilis (Kippist) Stapf and D. iburua Stapf]. Millets are resilient to extreme environmental conditions especially to inadequate moisture and are rich in nutrients. Millets are also considered to be a healthy food, mainly due to the lack of gluten (a substance that causes coeliac disease) in their grain. Despite these agronomic, nutritional and health-related benefits, millets produce very low yield compared to major cereals such as wheat and rice. This extremely low productivity is related to the challenging environment in which they are extensively cultivated and to the little research investment in these crops. Recently, several national and international initiatives have begun to support the improvement of diverse millet types.
Resumo:
When plants are infected with avirulent pathogens, a selected group of plant cells rapidly die in a process commonly called the hypersensitive response (HR). Some mutations and overexpression of some unrelated genes mimic the HR lesion and associated defense responses. In all of these situations, a genetically programmed cell death pathway is activated wherein the cell actively participates in killing itself. Here we report a developmentally and environmentally regulated HR-like cell death in potato leaves constitutively expressing bacterial pyruvate decarboxylase (PDC). Lesions first appeared on the tip of fully expanded source leaves. Lesion formation was accompanied by activation of multiple defense responses and resulted in a significant resistance toPhytophthora infestans. The transgenic plants showed a five- to 12-fold increase in leaf tissue acetaldehyde and exported two- to 10-fold higher amounts of sucrose compared to the wild-type. When plants were grown at a higher temperature, both the lesion phenotype and sucrose export were restored to wild-type situations. The reduced levels of acetaldehyde at the elevated temperature suggested that the interplay of acetaldehyde with environmental and physiological factors is the inducer of lesion development. We propose that sugar metabolism plays a crucial role in the execution of cell death programs in plants.
Resumo:
Tef [Eragrostis tef (Zucc.) Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA) inhibitors particularly paclobutrazol (PBZ) on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.). The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield) that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.
Resumo:
Plant proteolysis is a metabolic process where specific enzymes called peptidases degrade proteins. In plants, this complex process involves broad metabolic networks and different sub-cellular compartments. Several types of peptidases take part in the proteolytic process, mainly cysteine-, serine-, aspartyl- and metallo- peptidases. Among the cysteine-peptidases, the papain-like or C1A peptidases (family C1, clan CA) are extensively present in land plants and are classified into catepsins L-, B-, H- and Flike. The catalytic mechanism of these C1A peptidases is highly conserved and involves the three amino acids Cys, His and Asn in the catalytic triad, and a Gln residue which seems essential for maintaining an active enzyme conformation. These proteins are synthesized as inactive precursors, which comprise an N-terminal signal peptide, a propeptide, and the mature protein. In barley, we have identified 33 cysteine-peptidases from the papain-like family, classifying them into 8 different groups. Five of them corresponded to cathepsins L-like (5 subgroups), 1 cathepsin B-like group, 1 cathepsin F-like group and 1 cathepsin H-like group. Besides, C1A peptidases are the specific targets of the plant proteinaceous inhibitors known as phytocystatins (PhyCys). The cystatin inhibitory mechanism is produced by a tight and reversible interaction with their target enzymes. In barley, the cystatin gene family is comprised by 13 members. In this work we have tried to elucidate the role of the C1A cysteine-peptidases and their specific inhibitors (cystatins) in the germination process of the barley grain. Therefore, we selected a representative member of each group/subgroup of C1A peptidases (1 cathepsin B-like, 1 cathepsin F-like, 1 cathepsin H-like and 5 cathepsins L-like). The molecular characterization of the cysteine-peptidases was done and the peptidase-inhibitor interaction was analyzed in vitro and in vivo. A study in the structural basis for specificity of pro-peptide/enzyme interaction in barley C1A cysteine-peptidases has been also carried out by inhibitory assays and the modeling of the three-dimensional structures. The barley grain maturation produces the accumulation of storage proteins (prolamins) in the endosperm which are mobilized during germination to supply the required nutrients until the photosynthesis is fully established. In this work, we have demonstrated the participation of the cysteine-peptidases and their inhibitors in the degradation of the different storage protein fractions (hordeins, albumins and globulins) present in the barley grain. Besides, transgenic barley plants overexpressing or silencing cysteine-peptidases or cystatins were obtained by Agrobacterium-mediated transformation of barley immature embryos to analyze their physiological function in vivo. Preliminary assays were carried out with the T1 grains of several transgenic lines. Comparing the knock-out and the overexpressing lines with the WT, alterations in the germination process were detected and were correlated with their grain hordein content. These data will be validated with the homozygous grains that are being produced through the double haploid technique by microspore culture. Resumen La proteólisis es un proceso metabólico por el cual se lleva a cabo la degradación de las proteínas de un organismo a través de enzimas específicas llamadas proteasas. En plantas, este complejo proceso comprende un entramado de rutas metabólicas que implican, además, diferentes compartimentos subcelulares. En la proteólisis participan numerosas proteasas, principalmente cisteín-, serín-, aspartil-, y metalo-proteasas. Dentro de las cisteín-proteasas, las proteasas tipo papaína o C1A (familia C1, clan CA) están extensamente representadas en plantas terrestres, y se clasifican en catepsinas tipo L, B, H y F. El mecanismo catalítico de estas proteasas está altamente conservado y la triada catalítica formada por los aminoácidos Cys, His y Asn, y a un aminoácido Gln, que parece esencial para el mantenimiento de la conformación activa de la proteína. Las proteasas C1A se sintetizan como precursores inactivos y comprenden un péptido señal en el extremo N-terminal, un pro-péptido y la proteína madura. En cebada hemos identificado 33 cisteín-proteasas de tipo papaína y las hemos clasificado filogenéticamente en 8 grupos diferentes. Cinco de ellos pertenecen a las catepsinas tipo L (5 subgrupos), un grupo a las catepsinas tipo-B, otro a las catepsinas tipo-F y un último a las catepsinas tipo-H. Las proteasas C1A son además las dianas específicas de los inhibidores protéicos de plantas denominados fitocistatinas. El mecanismo de inhibición de las cistatinas está basado en una fuerte interacción reversible. En cebada, se conoce la familia génica completa de las cistatinas, que está formada por 13 miembros. En el presente trabajo se ha investigado el papel de las cisteín-proteasas de cebada y sus inhibidores específicos en el proceso de la germinación de la semilla. Para ello, se seleccionó una proteasa representante de cada grupo/subgrupo (1 catepsina tipo- B, 1 tipo-F, 1 tipo-H, y 5 tipo-L, una por cada subgrupo). Se ha llevado a cabo su caracterización molecular y se ha analizado la interacción enzima-inhibidor tanto in vivo como in vitro. También se han realizado estudios sobre las bases estructurales que demuestran la especificidad en la interacción enzima/propéptido en las proteasas C1A de cebada, mediante ensayos de inhibición y la predicción de modelos estructurales de la interacción. Finalmente, y dado que durante la maduración de la semilla se almacenan proteínas de reserva (prolaminas) en el endospermo que son movilizadas durante la germinación para suministrar los nutrientes necesarios hasta que la nueva planta pueda realizar la fotosíntesis, en este trabajo se ha demostrado la participación de las cisteínproteasas y sus inhibidores en la degradación de las diferentes tipos de proteínas de reserva (hordeinas, albúmins y globulinas) presentes en el grano de cebada. Además, se han obtenido plantas transgénicas de cebada que sobre-expresan o silencian cistatinas y cisteín-proteasas con el fin de analizar la función fisiológica in vivo. Se han realizado análisis preliminares en las semillas T1 de varias líneas tránsgenicas de cebada y al comparar las líneas knock-out y las líneas de sobre-expresión con las silvestres, se han detectado alteraciones en la germinación que están además correlacionadas con el contenido de hordeinas de las semillas. Estos datos serán validados en las semillas homocigotas que se están generando mediante la técnica de dobles haploides a partir del cultivo de microesporas.
Resumo:
Protease inhibitors from plants have been involved in defence mechanisms against pests and pathogens. Phytocystatins and trypsin/α-amylase inhibitors are two of the best characterized protease inhibitor families in plants. In barley, thirteen cystatins (HvCPI-1 to 13) and the BTI-CMe trypsin inhibitor have been previously studied. Their capacity to inhibit pest digestive proteases, and the negative in vivo effect caused by plants expressing these inhibitors on pests support the defence function of these proteins. Barley cystatins are also able to inhibit in vitro fungal growth. However, the antifungal effect of these inhibitors in vivo had not been previously tested. Moreover, their in vitro and in vivo effect on plant pathogenous bacteria is still unknown. In order to obtain new insights on this feature, in vitro assays were made against different bacterial and fungal pathogens of plants using the trypsin inhibitor BTI-CMe and the thirteen barley cystatins. Most barley cystatins and the BTI-CMe inhibitor were able to inhibit mycelial growth but no bacterial growth. Transgenic Arabidopsis plants independently expressing the BTI-CMe inhibitor and the cystatin HvCPI-6 were tested against the same bacterial and fungal pathogens. Neither the HvCPI-6 expressing transgenic plants nor the BTI-CMe ones were more resistant to plant pathogen fungi and bacteria than control Arabidopsis plants. The differences observed between the in vitro and in planta assays against phytopathogenic fungi are discussed
Resumo:
In the present study (i) the impact of plant Boron (B) status on foliar B absorption and (ii) the effect of B complexation with polyols (sorbitol or mannitol) on B absorption and translocation was investigated. Soybean (Glycine max (L.) Meer.) plants grown in nutrient solution containing 0 μM, 10 μM, 30 μM or 100 μM 11B labelled boric acid (BA) were treated with 50 mM 10B labelled BA applied to the basal parts of two leaflets of one leaf, either pure or in combination with 500 mM sorbitol or mannitol. After one week, 10B concentrations in different plant parts were determined. In B deficient leaves (0 μM 11B), 10B absorption was significantly lower than in all other treatments (9.7% of the applied dose vs. 26%–32%). The application of BA in combination with polyols increased absorption by 18–25% as compared to pure BA. The absolute amount of applied 10B moving out of the application zone was lowest in plants with 0 μM 11B supply (1.1% of the applied dose) and highest in those grown in 100 μM 11B (2.8%). The presence of sorbitol significantly decreased the share of mobile 10B in relation to the amount absorbed. The results suggest that 11B deficiency reduces the permeability of the leaf surface for BA. The addition of polyols may increase 10B absorption, but did not improve 10B distribution within the plant, which was even hindered when applied a sorbitol complex.
Resumo:
The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA a-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was significantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis
Resumo:
NADPH:protochlorophyllide oxidoreductase is a key enzyme for the light-induced greening of etiolated angiosperm plants. In barley, two POR proteins exist termed PORA and PORB that have previously been proposed to structurally and functionally cooperate in terms of a higher molecular mass light-harvesting complex named LHPP, in the prolamellar body of etioplasts [Nature 397 (1999) 80]. In this study we examined the expression pattern of LHPP during seedling etiolation and de-etiolation under different experimental conditions. Our results show that LHPP is developmentally expressed across the barley leaf gradient. We further provide evidence that LHPP operates both in plants that etiolate completely before being exposed to white light and in plants that etiolate only partially and begin light-harvesting as soon as traces of light become available in the uppermost parts of the soil. As a result of light absorption, in either case LHPP converts Pchlide a to chlorophyllide (Chlide) a and in turn disintegrates. The released Chlide a, as well as Chlide b produced upon LHPP’s light-dependent dissociation, which leads to the activation of the PORA as a Pchlide b-reducing enzyme, then bind to homologs of water-soluble chlorophyll proteins of Brassicaceae. We propose that these proteins transfer Chlide a and Chlide b to the thylakoids, where their esterification with phytol and assembly into the photosynthetic membrane complexes ultimately takes place. Presumably due to the tight coupling of LHPP synthesis and degradation, as well as WSCP formation and photosynthetic membrane assembly, efficient photo-protection is conferred onto the plant.
Resumo:
El Zn es un elemento esencial para el crecimiento saludable y reproducción de plantas, animales y humanos. La deficiencia de Zn es una de las carencias de micronutrientes más extendidas en muchos cultivos, afectando a grandes extensiones de suelos en diferentes áreas agrícolas. La biofortificación agronómica de diferentes cultivos, incrementando la concentración de micronutriente Zn en la planta, es un medio para evitar la deficiencia de Zn en animales y humanos. Tradicionalmente se han utilizado fertilizantes de Zn inorgánicos, como el ZnSO4, aunque en los últimos años se están utilizado complejos de Zn como fuentes de este micronutriente, obteniéndose altas concentraciones de Zn soluble y disponible en el suelo. Sin embargo, el envejecimiento de la fuente en el suelo puede causar cambios importantes en su disponibilidad para las plantas. Cuando se añaden al suelo fuentes de Zn inorgánicas, las formas de Zn más solubles pierden actividad y extractabilidad con el paso del tiempo, transformándose a formas más estables y menos biodisponibles. En esta tesis se estudia el efecto residual de diferentes complejos de Zn de origen natural y sintético, aplicados en cultivos previos de judía y lino, bajo dos condiciones de riego distintas (por encima y por debajo de la capacidad de campo, respectivamente) y en dos suelos diferentes (ácido y calizo). Los fertilizantes fueron aplicados al cultivo previo en tres dosis diferentes (0, 5 y 10 mg Zn kg-1 suelo). El Zn fácilmente lixiviable se estimó con la extracción con BaCl2 0,1M. Bajo condiciones de humedad por encima de la capacidad de campo se obtuvieron mayores porcentajes de Zn lixiviado en el suelo calizo que en el suelo ácido. En el caso del cultivo de judía realizado en condiciones de humedad por encima de la capacidad de campo se compararon las cantidades extraídas con el Zn lixiviado real. El análisis de correlación entre el Zn fácilmente lixiviable y el estimado sólo fue válido para complejos con alta movilidad y para cada suelo por separado. Bajo condiciones de humedad por debajo de la capacidad de campo, la concentración de Zn biodisponible fácilmente lixiviable presentó correlaciones positivas y altamente significativas con la concentración de Zn disponible en el suelo. El Zn disponible se estimó con varios métodos de extracción empleados habitualmente: DTPA-TEA, DTPA-AB, Mehlich-3 y LMWOAs. Estas concentraciones fueron mayores en el suelo ácido que en el calizo. Los diferentes métodos utilizados para estimar el Zn disponible presentaron correlaciones positivas y altamente significativas entre sí. La distribución del Zn en las distintas fracciones del suelo fue estimada con diferentes extracciones secuenciales. Las extracciones secuenciales mostraron un descenso entre los dos cultivos (el anterior y el actual) en la fracción de Zn más lábil y un aumento en la concentración de Zn asociado a fracciones menos lábiles, como carbonatos, óxidos y materia orgánica. Se obtuvieron correlaciones positivas y altamente significativas entre las concentraciones de Zn asociado a las fracciones más lábiles (WSEX y WS+EXC, experimento de la judía y lino, respectivamente) y las concentraciones de Zn disponible, estimadas por los diferentes métodos. Con respecto a la planta se determinaron el rendimiento en materia seca y la concentración de Zn en planta. Se observó un aumento del rendimiento y concentraciones con el efecto residual de la dosis mayores (10 mg Zn kg-1) con respecto a la dosis inferior (5 mg Zn 12 kg-1) y de ésta con respecto a la dosis 0 (control). El incremento de la concentración de Zn en todos los tratamientos fertilizantes, respecto al control, fue mayor en el suelo ácido que en el calizo. Las concentraciones de Zn en planta indicaron que, en el suelo calizo, serían convenientes nuevas aplicaciones de Zn en posteriores cultivos para mantener unas adecuadas concentraciones en planta. Las mayores concentraciones de Zn en la planta de judía, cultivada bajo condiciones de humedad por encima de la capacidad de campo, se obtuvieron en el suelo ácido con el efecto residual del Zn-HEDTA a la dosis de 10 mg Zn kg-1 (280,87 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-DTPA-HEDTA-EDTA a la dosis de 10 mg Zn kg-1 (49,89 mg Zn kg-1). En el cultivo de lino, cultivado bajo condiciones de humedad por debajo de la capacidad de campo, las mayores concentraciones de Zn en planta ese obtuvieron con el efecto residual del Zn-AML a la dosis de 10 mg Zn kg-1 (224,75 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-EDTA a la dosis de 10 mg Zn kg-1 (99,83 mg Zn kg-1). El Zn tomado por la planta fue determinado como combinación del rendimiento y de la concentración en planta. Bajo condiciones de humedad por encima de capacidad de campo, con lixiviación, el Zn tomado por la judía disminuyó en el cultivo actual con respecto al cultivo anterior. Sin embargo, en el cultivo de lino, bajo condiciones de humedad por debajo de la capacidad de campo, se obtuvieron cantidades de Zn tomado superiores en el cultivo actual con respecto al anterior. Esta tendencia también se observó, en ambos casos, con el porcentaje de Zn usado por la planta. Summary Zinc is essential for healthy growth and reproduction of plants, animals and humans. Zinc deficiency is one of the most widespread micronutrient deficiency in different crops, and affect different agricultural areas. Agronomic biofortification of crops produced by an increased of Zn in plant, is one way to avoid Zn deficiency in animals and humans Sources with inorganic Zn, such as ZnSO4, have been used traditionally. Although, in recent years, Zn complexes are used as sources of this micronutrient, the provide high concentrations of soluble and available Zn in soil. However, the aging of the source in the soil could cause significant changes in their availability to plants. When an inorganic source of Zn is added to soil, Zn forms more soluble and extractability lose activity over time, transforming into forms more stable and less bioavailable. This study examines the residual effect of different natural and synthetic Zn complexes on navy bean and flax crops, under two different moisture conditions (above and below field capacity, respectively) and in two different soils (acid and calcareous). Fertilizers were applied to the previous crop in three different doses (0, 5 y 10 mg Zn kg-1 soil). The easily leachable Zn was estimated by extraction with 0.1 M BaCl2. Under conditions of moisture above field capacity, the percentage of leachable Zn in the calcareous soil was higher than in acid soil. In the case of navy bean experiment, performed in moisture conditions of above field capacity, amounts extracted of easily leachable Zn were compared with the real leachable Zn. Correlation analysis between the leachable Zn and the estimate was only valid for complex with high mobility and for each soil separately. Under moisture conditions below field capacity, the concentration of bioavailable easily leachable Zn showed highly significant positive correlations with the concentration of available soil Zn. The available Zn was estimated with several commonly used extraction methods: DTPA-TEA, AB-DTPA, Mehlich-3 and LMWOAs. These concentrations were higher in acidic soil than in the calcareous. The different methods used to estimate the available Zn showed highly significant positive correlations with each other. The distribution of Zn in the different fractions of soil was estimated with different sequential extractions. The sequential extractions showed a decrease between the two crops (the previous and current) at the most labile Zn fraction and an increase in the concentration of Zn associated with the less labile fractions, such as carbonates, oxides and organic matter. A positive and highly significant correlation was obtained between the concentrations of Zn associated with more labile fractions (WSEX and WS + EXC, navy bean and flax experiments, respectively) and available Zn concentrations determined by the different methods. Dry matter yield and Zn concentration in plants were determined in plant. Yield and Zn concentration in plant were higher with the residual concentrations of the higher dose applied (10 mg Zn kg-1) than with the lower dose (5 mg Zn kg-1), also these parameters showed higher values with application of this dose than with not Zn application. The increase of Zn concentration in plant with Zn treatments, respect to the control, was greater in the acid soil than in the calcareous. The Zn concentrations in plant indicated that in the calcareous soil, new applications of Zn are desirable in subsequent crops to maintain suitable concentrations in plant. 15 The highest concentrations of Zn in navy bean plant, performed under moisture conditions above the field capacity, were obtained with the residual effect of Zn-HEDTA at the dose of 10 mg Zn kg-1 (280.87 mg Zn kg-1) in the acid soil, and with the residual effect of Zn- DTPA-HEDTA-EDTA at a dose of 10 mg Zn kg-1 (49.89 mg Zn kg-1) in the calcareous soil. In the flax crop, performed under moisture conditions below field capacity, the highest Zn concentrations in plant were obtained with the residual effect of Zn-AML at the dose of 10 mg Zn kg-1 (224.75 Zn mg kg-1) and with the residual effect of Zn-EDTA at a dose of 10 mg Zn kg-1 (99.83 mg Zn kg-1) in the calcareous soil. The Zn uptake was determined as a combination of yield and Zn concentration in plant. Under moisture conditions above field capacity, with leaching, Zn uptake by navy bean decreased in the current crop, respect to the previous crop. However, in the flax crop, under moisture conditions below field capacity, Zn uptake was higher in the current crop than in the previous. This trend is also observed in both cases, with the percentage of Zn used by the plant
Resumo:
Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.
Resumo:
El suelo salino impone un estrés abiótico importante que causa graves problemas en la agricultura ya que la mayoría de los cultivos se ven afectados por la salinidad debido a efectos osmóticos y tóxicos. Por ello, la contaminación y la escasez de agua dulce, la salinización progresiva de tierras y el aumento exponencial de la población humana representan un grave problema que amenaza la seguridad alimentaria mundial para las generaciones futuras. Por lo tanto, aumentar la tolerancia a la salinidad de los cultivos es un objetivo estratégico e ineludible para garantizar el suministro de alimentos en el futuro. Mantener una óptima homeostasis de K+ en plantas que sufren estrés salino es un objetivo importante en el proceso de obtención de plantas tolerantes a la salinidad. Aunque el modelo de la homeostasis de K+ en las plantas está razonablemente bien descrito en términos de entrada de K+, muy poco se sabe acerca de los genes implicados en la salida de K+ o de su liberación desde la vacuola. En este trabajo se pretende aclarar algunos de los mecanismos implicados en la homeostasis de K+ en plantas. Para ello se eligió la briofita Physcomitrella patens, una planta no vascular de estructura simple y de fase haploide dominante que, entre muchas otras cualidades, hacen que sea un modelo ideal. Lo más importante es que no sólo P. patens es muy tolerante a altas concentraciones de Na+, sino que también su posición filogenética en la evolución de las plantas abre la posibilidad de estudiar los cambios claves que, durante el curso de la evolución, se produjeron en las diversas familias de los transportadores de K+. Se han propuesto varios transportadores de cationes como candidatos que podrían tener un papel en la salida de K+ o su liberación desde la vacuola, especialmente miembros de la familia CPA2 que contienen las familias de transportadores KEA y CHX. En este estudio se intenta aumentar nuestra comprensión de las funciones de los transportadores de CHX en las células de las plantas usando P. patens, como ya se ha dicho. En esta especie, se han identificado cuatro genes CHX, PpCHX1-4. Dos de estos genes, PpCHX1 y PpCHX2, se expresan aproximadamente al mismo nivel que el gen PpACT5, y los otros dos genes muestran una expresión muy baja. La expresión de PpCHX1 y PpCHX2 en mutantes de Escherichia coli defectivos en el transporte de K+ restauraron el crecimiento de esta cepa en medios con bajo contenido de K+, lo que viii sugiere que la entrada de K+ es energizada por un mecanismo de simporte con H+. Por otra parte, estos transportadores suprimieron el defecto asociado a la mutación kha1 en Saccharomyces cerevisiae, lo que sugiere que podrían mediar un antiporte en K+/H+. La proteína PpCHX1-GFP expresada transitoriamente en protoplastos de P. patens co-localizó con un marcador de Golgi. En experimentos similares, la proteína PpCHX2-GFP localizó aparentemente en la membrana plasmática y tonoplasto. Se construyeron las líneas mutantes simples de P. patens ΔPpchx1 y ΔPpchx2, y también el mutante doble ΔPpchx2 ΔPphak1. Los mutantes simples crecieron normalmente en todas las condiciones ensayadas y mostraron flujos de entrada normales de K+ y Rb+; la mutación ΔPpchx2 no aumentó el defecto de las plantas ΔPphak1. En experimentos a largo plazo, las plantas ΔPpchx2 mostraron una retención de Rb+ ligeramente superior que las plantas silvestres, lo que sugiere que PpCHX2 promueve la transferencia de Rb+ desde la vacuola al citosol o desde el citosol al medio externo, actuando en paralelo con otros transportadores. Sugerimos que transportadores de K+ de varias familias están involucrados en la homeostasis de pH de orgánulos ya sea mediante antiporte K+/H+ o simporte K+-H+.ix ABSTRACT Soil salinity is a major abiotic stress causing serious problems in agriculture as most crops are affected by it. Moreover, the contamination and shortage of freshwater, progressive land salinization and exponential increase of human population aggravates the problem implying that world food security may not be ensured for the next generations. Thus, a strategic and an unavoidable goal would be increasing salinity tolerance of plant crops to secure future food supply. Maintaining an optimum K+ homeostasis in plants under salinity stress is an important trait to pursue in the process of engineering salt tolerant plants. Although the model of K+ homeostasis in plants is reasonably well described in terms of K+ influx, very little is known about the genes implicated in K+ efflux or release from the vacuole. In this work, we aim to clarify some of the mechanisms involved in K+ homeostasis in plants. For this purpose, we chose the bryophyte plant Physcomitrella patens, a nonvascular plant of simple structure and dominant haploid phase that, among many other characteristics, makes it an ideal model. Most importantly, not only P. patens is very tolerant to high concentrations of Na+, but also its phylogenetic position in land plant evolution opens the possibility to study the key changes that occurred in K+ transporter families during the course of evolution. Several cation transporter candidates have been proposed to have a role in K+ efflux or release from the vacuole especially members of the CPA2 family which contains the KEA and CHX transporter families. We intended in this study to increase our understanding of the functions of CHX transporters in plant cells using P. patens, in which four CHX genes have been identified, PpCHX1-4. Two of these genes, PpCHX1 and PpCHX2, are expressed at approximately the same level as the PpACT5 gene, but the other two genes show an extremely low expression. PpCHX1 and PpCHX2 restored growth of Escherichia coli mutants on low K+-containing media, suggesting they mediated K+ uptake that may be energized by symport with H+. In contrast, these genes suppressed the defect associated to the kha1 mutation in Saccharomyces cerevisiae, which suggest that they might mediate K+/H+ antiport. PpCHX1-GFP protein transiently expressed in P. patens protoplasts co-localized with a Golgi marker. In similar experiments, the PpCHX2-GFP protein appeared to localize to tonoplast and plasma x membrane. We constructed the ΔPpchx1 and ΔPpchx2 single mutant lines, and the ΔPpchx2 ΔPphak1 double mutant. Single mutant plants grew normally under all the conditions tested and exhibited normal K+ and Rb+ influxes; the ΔPpchx2 mutation did not increase the defect of ΔPphak1 plants. In long-term experiments, ΔPpchx2 plants showed a slightly higher Rb+ retention than wild type plants, which suggests that PpCHX2 mediates the transfer of Rb+ from either the vacuole to the cytosol or from the cytosol to the external medium in parallel with other transporters. We suggest that K+ transporters of several families are involved in the pH homeostasis of organelles by mediating either K+/H+ antiport or K+-H+ symport.
Resumo:
Lupinus mariae-josephae is a recently discovered endemism that is only found in alkaline-limed soils, a unique habitat for lupines, from a small area in Valencia region (Spain). In these soils, L. mariae-josephae grows in just a few defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. We have previously shown that L. mariae-josephae plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes. Greenhouse experiments using L. mariae-josephae trap-plants showed the absence or near absence of L. mariae-josephae-nodulating bacteria in ‘‘terra rossa’’ soils of Valencia outside of L. mariaejosephae plant patches, and in other ‘‘terra rossa’’ or alkaline red soils of the Iberian Peninsula and Balearic Islands outside of the Valencia L. mariae-josephae endemism region. Among the bradyrhizobia able to establish an efficient symbiosis with L. mariae-josephae plants, two strains, LmjC and LmjM3 were selected as inoculum for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural L. mariae-josephae populations, and successful reproduction of the plant was achieved. Interestingly, the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia, and optimal performance was observed in plants inoculated with LmjC, a strain that had previously shown the most efficient behavior under controlled conditions. Our results define conditions for L. mariae-josephae conservation and for extension to alkaline-limed soil habitats, where no other known lupine can thrive.
Resumo:
`Candidatus Liberibacter asiaticus´ is the most prevalent Liberibacter sp. associated with huanglongbing (HLB) in Brazil. Within São Paulo state (SP), HLB has spread more rapidly to and reached higher incidence in regions with relatively mild (cooler) summer temperatures. This suggests that climate can influence disease spread and severity. ?Ca. L. asiaticus? titers on soft, immature leaves from infected ?Valencia? sweet orange plants exposed to different temperature regimes and adult Diaphorina citri fed for 48 h on these plants for ?Ca. L. asiaticus? acquisition were determined by quantitative polymerase chain reaction in two experiments. The first experiment included plants with three levels of infection, three incubation periods (IPs), and air temperatures favorable (14.6 to 28°C) and unfavorable (24 to 38°C) to ?Ca. L. asiaticus?. The second included plants with severe late-stage infections, 10 IPs (based on 3-day intervals over 27 days), and three air temperature regimes (12 to 24, 18 to 30, and 24 to 38°C). Overall, ?Ca. L. asiaticus? titers and the percentages of ?Ca. L. asiaticus?-positive psyllids were lower in plants maintained at the warmer temperature regime (24 to 38°C) than in plants maintained in the cooler regimes. The results suggest that the lower incidence and slower spread of ?Ca. L. asiaticus? to warmer regions of SP are related to the influence of ambient temperatures on titers of ?Ca. L. asiaticus? in leaves.
Resumo:
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.
Resumo:
Induced defense responses in plants usually involve biosynthesis of antimicrobial metabolites and their targeted secretion at the site of pathogen contact. Our recent study on the model plant Arabidopsis revealed a novel pathogen triggered metabolism pathway for glucosinolates, amino acid-derived thio-glucosides characteristic for crucifer plants that so far were mainly known as insect deterrents (Bednarek et al. 2009).