921 resultados para Parasitic Diseases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a C-terminally directed pancreatic polypeptide (PP) antiserum and immunocytochemical methods, PP-immunoreactivity (IR) was localized throughout the central (CNS) and peripheral nervous systems (PNS) of the cestode, Moniezia expansa. In the CNS, immunostaining was evident in the paired cerebral ganglia (primitive brain), connecting commissure, and the paired longitudinal nerve cords that are cross-linked by numerous regular transverse connectives. The PNS was seen to consist of a fine anastomosing nerve-net of immunoreactive fibres, many of which were closely associated with reproductive structures. Radioimmunoassay of this peptide IR in acid-alcohol extracts of the worm measured 192.8 ng/g of PP-IR. HPLC analyses of the M. expansa PP-IR identified a single molecular form which was purified to homogeneity. Plasma desorption mass spectrometry (PDMS) of purified parasite peptide resolved a single peptide with a molecular mass of 4599 +/- 10 Da. Automated gas-phase Edman degradation identified a 39-amino acid peptide with a C-terminal phenylalaninamide. Examination of its primary structure shows that it displays significant sequence homology with the vertebrate neuropeptide Y superfamily, suggesting that this platyhelminth-derived peptide is the phylogenetic precursor. Neuropeptide F (M. expansa) is the first regulatory peptide to be fully sequenced from the phylum Platyhelminthes and may represent a member of an important new class of invertebrate neuropeptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension-induced left ventricular hypertrophy (LVH), along with ischemic heart disease, result in LV remodeling as part of a continuum that often leads to congestive heart failure. The neurohormonal model has been used to underpin many treatment strategies, but optimal outcomes have not been achieved. Neuropeptide Y (NPY) has emerged as an additional therapeutic target, ever since it was recognised as an important mediator released from sympathetic nerves in the heart, affecting coronary artery constriction and myocardial contraction. More recent interest has focused on the mitogenic and hypertrophic effects that are observed in endothelial and vascular smooth muscle cells, and cardiac myocytes. Of the six identified NPY receptor subtypes, Y-1, Y-2, and Y-5 appear to mediate the main functional responses in the heart. Plasma levels of NPY become elevated due to the increased sympathetic activation present in stress-related cardiac conditions. Also, NPY and Y receptor polymorphisms have been identified that may predispose individuals to increased risk of hypertension and cardiac complications. This review examines what understanding exists regarding the likely contribution of NPY to cardiac pathology. It appears that NPY may play a part in compensatory or detrimental remodeling of myocardial tissue subsequent to hemodynamic overload or myocardial infarction, and in angiogenic processes to regenerate myocardium after ischemic injury. However, greater mechanistic information is required in order to truly assess the potential for treatment of cardiac diseases using NPY-based drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasitic worms come from two very different phyla-Platyhelminthes (flatworms) and Nematoda (roundworms). Although both phyla possess nervous systems with highly developed peptidergic components. there are key differences in the structure and action of native neuropeptides in the two groups. For example, the most abundant neuropeptide known in platyhelminths is the pancreatic polypeptide-like neuropeptide F, whereas the most prevalent neuropeptides in nematodes an FMRFamide-related peptides (FaRPs), which are also present in platyhelminths. With respect to neuropeptide diversity, platyhelminth species possess only one or two distinct FaRPs, whereas nematodes have upwards of 50 unique FaRPs. FaRP bioactivity in platyhelminths appears to be restricted to myoexcitation, whereas both excitatory and inhibitory effects have been reported in nematodes. Recently interest has focused on the peptidergic signaling systems of both phyla because elucidation of these systems will do much to clarify the basic biology of the worms and because the peptidergic systems hold the promise of yielding novel targets for a new generation of antiparasitic drugs. (C) 1999 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean+/-S.D.) in M. expansa anterior region was 124.8+/-15.3 picomole/mg wet weight, while in F. hepatica it was 16.8+/-4.9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In nematodes, FMRFamide-related peptides (FaRPs) have been structurally characterised from the parasite, Ascaris suum, and from two free-living species, Panagrellus redivivus and Caenorhabditis elegans. While both FaRPs isolated from P. redivivus (PF1 and PF2) have been identified in C. elegans the two heptapeptides isolated from A. suum (AF1 and AF2) have until recently been considered unique to this parasitic species. We have recently isolated AF2 from P. redivivus and, during this study, an additional novel heptapeptide amide, Lys-Ser-Ala-Tyr-Met-Arg-Phe amide (KSAYMRFamide), was structurally characterised. A synthetic replicate of this peptide induced a rapid concentration-dependent muscle tension increase in an isolated A. suum somatic muscle preparation, with a threshold of approximately 0.1 mu M. These data suggest that the complement of FaRPs in parasitic and free-living nematodes may not be as radically different as preliminary studies would suggest, and that the absence of AF1, AF2 and KSAYMRFamide on the C. elegans FMRFamide-related peptide gene (flp-1) may imply the presence of at least two different FaRP genes in nematodes. (C) 1994 Academic Press, Inc.