946 resultados para POSTEXERCISE OXYGEN-CONSUMPTION
Resumo:
BACKGROUND AND AIMS: Fish oil (FO) supplementation prevents the development of obesity and insulin resistance, and upregulate the expression of UCP3 in skeletal muscle in rodents. This may represent indirect evidence that FO promotes fat oxidation and/or alter energy efficiency. The aim of this study was to evaluate whether such effects can be observed in humans. The metabolic effects of FO were assessed during exercise in order to obtain a direct measurement of energy efficiency. METHODS: Eight healthy male volunteers were studied with and without supplementation with 7.2 g/day FO (including 1.1 g/day eicosopentaenoic acid and 0.7 g/day decosahexaenoic acid) during 14 days. Their VO(2 max) was measured on cycle ergometer. Thereafter, energy metabolism (substrate oxidation, energy expenditure and energy efficiency) was assessed during a 30 min cycling exercise at 50% VO(2 max) performed 2 h 30 after a standardized, high carbohydrate breakfast. RESULTS: VO(2 max) was 38.6+/-2.2 after FO and 38.4+/-2.0 (mL x kg(-1) x min(-1)) in control conditions (NS). Basal plasma glucose, insulin and NEFA concentrations, and energy metabolism were similar with FO and in controls. During exercise, the increases in plasma NEFA concentrations, energy expenditure, glucose and lipid oxidation, and the decreases in glycaemia and insulinemia were not altered by FO intake. Energy efficiency was 22.4+/-0.6% after FO vs 21.8+/-0.7% in controls. In order to ascertain that the absence of effects of FO was not due to consumption of a carbohydrate meal immediately before exercise, 4 of the 8 subjects were re-studied in fasting conditions, FO also failed to alter energy efficiency in this subset of studies. CONCLUSION: FO supplementation did not significantly alter energy metabolism and energy efficiency during exercise in healthy humans.
Resumo:
The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.
Resumo:
AIMS: More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. METHODS AND RESULTS: Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. CONCLUSION: Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in humans.
Resumo:
OBJECTIVE: To compare the heart-rate monitoring with the doubly labelled water (2H2(18)O) method to estimate total daily energy expenditure in obese and non-obese children. DESIGN: Cross sectional study of obese and normal weight children. SUBJECTS: 13 prepubertal children: six obese (4M, 2F, 9.1 +/- 1.5 years, 47.3 +/- 9.7 kg) and seven non-obese (3M, 4F, 9.3 +/- 0.6 years, 31.8 +/- 3.2 kg). MEASUREMENTS: Total daily energy expenditure was assessed by means of the doubly labelled water method (TEEDLW) and of heart-rate monitoring (TEEHR). RESULTS: TEEHR was significantly (P < 0.05) higher than TEEDLW in obese children (9.47 +/- 0.84 MJ/d vs 8.99 +/- 0.63 MJ/d) whereas it was not different in non-obese children (8.43 +/- 2.02 MJ/d vs 8.42 +/- 2.30 MJ/d, P = NS). The difference of TEE assessed by HR monitoring in the obese group averaged 6.2 +/- 4.7%. At the individual level, the degree of agreement (difference between TEEHR and TEEDLW +/- 2s.d.) was low both in obese (-0.36, 1.32 MJ/d) and in non-obese children (-1.30, 1.34 MJ/d). At the group level, the agreement between the two methods was good in nonobese children (95% c.i. for the bias:-0.59, 0.63 MJ/d) but not in obese children (0.04, 0.92 MJ/d). Duration of sleep and energy expenditure during resting and physical activity were not significantly different in the two groups. Patterns of heart-rate (or derived energy expenditure) during the day-time were similar in obese and non-obese children. CONCLUSION: The HR monitoring technique provides an estimation of TEE close to that assessed by the DLW method in non-obese prepubertal children. In comparison with DLW, the HR monitoring method yields a greater TEE value in obese children.
Resumo:
PURPOSE: Slight differences in physiological responses and nitric oxide (NO) have been reported at rest between hypobaric hypoxia (HH) and normobaric hypoxia (NH) during short exposure.Our study reports NO and oxidative stress at rest and physiological responses during moderate exercise in HH versus NH. METHODS: Ten subjects were randomly exposed for 24 h to HH (3000 m; FIO2, 20.9%; BP, 530 ± 6 mm Hg) or to NH (FIO2, 14.7%; BP, 720 ± 1 mm Hg). Before and every 8 h during the hypoxic exposures, pulse oxygen saturation (SpO2), HR, and gas exchanges were measured during a 6-min submaximal cycling exercise. At rest, the partial pressure of exhaled NO, blood nitrate and nitrite (NOx), plasma levels of oxidative stress, and pH levels were additionally measured. RESULTS: During exercise, minute ventilation was lower in HH compared with NH (-13% after 8 h, P < 0.05). End-tidal CO2 pressure was lower (P < 0.01) than PRE both in HH and NH but decreased less in HH than that in NH (-25% vs -37%, P < 0.05).At rest, exhaled NO and NOx decreased in HH (-46% and -36% after 24 h, respectively, P < 0.05) whereas stable in NH. By contrast, oxidative stress was higher in HH than that in NH after 24 h (P < 0.05). The plasma pH level was stable in HH but increased in NH (P < 0.01). When compared with prenormoxic values, SpO2, HR, oxygen consumption, breathing frequency, and end-tidal O2 pressure showed similar changes in HH and NH. CONCLUSION: Lower ventilatory responses to a similar hypoxic stimulus during rest and exercise in HH versus NH were sustained for 24 h and associated with lower plasma pH level, exaggerated oxidative stress, and impaired NO bioavailability.
Resumo:
GOJANOVIC, B., J. WELKER, K. IGLESIAS, C. DAUCOURT, and G. GREMION. Electric Bicycles as a New Active Transportation Modality to Promote Health. Med. Sci. Sports Exerc., Vol. 43, No. 11, pp. 2204-2210, 2011. Electrically assisted bicycles (EAB) are an emerging transportation modality favored for environmental reasons. Some physical effort is required to activate the supporting engine, making it a potential active commuting option. Purpose: We hypothesized that using an EAB in a hilly city allows sedentary subjects to commute comfortably, while providing a sufficient effort for health-enhancing purposes. Methods: Sedentary subjects performed four different trips at a self-selected pace: walking 1.7 km uphill from the train station to the hospital (WALK), biking 5.1 km from the lower part of town to the hospital with a regular bike (BIKE), or EAB at two different power assistance settings (EAB(high), EAB(std)). HR, oxygen consumption, and need to shower were recorded. Results: Eighteen sedentary subjects (12 female, 6 male) age 36 +/- 10 yr were included, with (V) over dotO(2max) of 39.4 +/- 5.4 mL.min(-1).kg(-1). Time to complete the course was 22 (WALK), 19 (EAB(high)), 21 (EAB(std)), and 30 (BIKE) min. Mean %(V) over dotO(2max) was 59.0%, 54.9%, 65.7%, and 72.8%. Mean%HR(max) was 71.5%, 74.5%, 80.3%, and 84.0%. There was no significant difference between WALK and EAB(high), but all other comparisons were different (P < 0.05). Two subjects needed to shower after EAB(high), 3 needed to shower after WALK, 8 needed to shower after EAB(std), and all 18 needed to shower after BIKE. WALK and EAB(high) elicited 6.5 and 6.1 METs (no difference), whereas it was 7.3 and 8.2 for EAB(std) and BIKE. Conclusions: EAB is a comfortable and ecological transportation modality, helping sedentary people commute to work and meet physical activity guidelines. Subjects appreciated ease of use and mild effort needed to activate the engine support climbing hills, without the need to shower at work. EAB can be promoted in a challenging urban environment to promote physical activity and mitigate pollution issues.
Resumo:
PURPOSE: Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS: Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS: Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS: During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Resumo:
BACKGROUND: The Richalet hypoxia sensitivity test (RT), which quantifies the cardiorespiratory response to acute hypoxia during exercise at an intensity corresponding to a heart rate of ~130 bpm in normoxia, can predict susceptibility of altitude sickness. Its ability to predict exercise performance in hypoxia is unknown. OBJECTIVES: Investigate: (1) whether cerebral blood flow (CBF) and cerebral tissue oxygenation (O2Hb; oxygenated hemoglobin, HHb; deoxygenated hemoglobin) responses during RT predict time-trial cycling (TT) performance in severe hypoxia; (2) if subjects with blunted cardiorespiratory responses during RT show greater impairment of TT performance in severe hypoxia. STUDY DESIGN: Thirteen men [27 ± 7 years (mean ± SD), Wmax: 385 ± 30 W] were evaluated with RT and the results related to two 15 km TT, in normoxia and severe hypoxia (FIO2 = 0.11). RESULTS: During RT, mean middle cerebral artery blood velocity (MCAv: index of CBF) was unaltered with hypoxia at rest (p > 0.05), while it was increased during normoxic (+22 ± 12 %, p < 0.05) and hypoxic exercise (+33 ± 17 %, p < 0.05). Resting hypoxia lowered cerebral O2Hb by 2.2 ± 1.2 μmol (p < 0.05 vs. resting normoxia); hypoxic exercise further lowered it to -7.6 ± 3.1 μmol below baseline (p < 0.05). Cerebral HHb, increased by 3.5 ± 1.8 μmol in resting hypoxia (p < 0.05), and further to 8.5 ± 2.9 μmol in hypoxic exercise (p < 0.05). Changes in CBF and cerebral tissue oxygenation during RT did not correlate with TT performance loss (R = 0.4, p > 0.05 and R = 0.5, p > 0.05, respectively), while tissue oxygenation and SaO2 changes during TT did (R = -0.76, p < 0.05). Significant correlations were observed between SaO2, MCAv and HHb during RT (R = -0.77, -0.76 and 0.84 respectively, p < 0.05 in all cases). CONCLUSIONS: CBF and cerebral tissue oxygenation changes during RT do not predict performance impairment in hypoxia. Since the changes in SaO2 and brain HHb during the TT correlated with performance impairment, the hypothesis that brain oxygenation plays a limiting role for global exercise in conditions of severe hypoxia remains to be tested further.
Resumo:
Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. J. Cell. Physiol. 231: 708-718, 2016. © 2015 Wiley Periodicals, Inc.
Resumo:
Maximal fat oxidation (MFO), as well as the exercise intensity at which it occurs (Fatmax), have been reported as lower in sedentary overweight individuals but have not been studied in trained overweight individuals. The aim of this study was to compare Fatmax and MFO in lean and overweight recreationally trained males matched for cardiorespiratory fitness (CRF) and to study the relationships between these variables, anthropometric characteristics, and CRF. Twelve recreationally trained overweight (high fatness (HiFat) group, 30.0% ± 5.3% body fat) and 12 lean males (low fatness (LoFat), 17.2% ± 5.7% body fat) matched for CRF (maximal oxygen consumption (V̇O2max) 39.0 ± 5.5 vs. 41.4 ± 7.6 mL·kg(-1)·min(-1), p = 0.31) and age (p = 0.93) performed a graded exercise test on a cycle ergometer. V̇O2max and fat and carbohydrate oxidation rates were determined using indirect calorimetry; Fatmax and MFO were determined with a mathematical model (SIN); and % body fat was assessed by air displacement plethysmography. MFO (0.38 ± 0.19 vs. 0.42 ± 0.16 g·min(-1), p = 0.58), Fatmax (46.7% ± 8.6% vs. 45.4% ± 7.2% V̇O2max, p = 0.71), and fat oxidation rates over a wide range of exercise intensities were not significantly different (p > 0.05) between HiFat and LoFat groups. In the overall cohort (n = 24), MFO and Fatmax were correlated with V̇O2max (r = 0.46, p = 0.02; r = 0.61, p = 0.002) but not with % body fat or body mass index (p > 0.05). Fat oxidation during exercise was similar in recreationally trained overweight and lean males matched for CRF. Consistently, substrate oxidation rates during exercise were not related to adiposity (% body fat) but were related to CRF. The benefits of high CRF independent of body weight and % body fat should be further highlighted in the management of obesity.
Resumo:
The effect of intramyocellular lipids (IMCLs) on endurance performance with high skeletal muscle glycogen availability remains unclear. Previous work has shown that a lipid-supplemented high-carbohydrate (CHO) diet increases IMCLs while permitting normal glycogen loading. The aim of this study was to assess the effect of fat supplementation on fat oxidation (Fox) and endurance performance. Twenty-two trained male cyclists performed 2 simulated time trials (TT) in a randomized crossover design. Subjects cycled at ∼53% maximal voluntary external power for 2 h and then followed 1 of 2 diets for 2.5 days: a high-CHO low-fat (HC) diet, consisting of CHO 7.4 g·kg(-1)·day(-1) and fat 0.5 g·kg(-1)·day(-1); or a high-CHO fat-supplemented (HCF) diet, which was a replication of the HC diet with ∼240 g surplus fat (30% saturation) distributed over the last 4 meals of the diet period. On trial morning, fasting blood was sampled and Fox was measured during an incremental exercise; a ∼1-h TT followed. Breath volatile compounds (VOCs) were measured at 3 time points. Mental fatigue, measured as reaction time, was evaluated during the TT. Plasma free fatty acid concentration was 50% lower after the HCF diet (p < 0.0001), and breath acetone was reduced (p < 0.05) "at rest". Fox peaked (∼0.35 g·kg(-1)) at ∼42% peak oxygen consumption, and was not influenced by diet. Performance was not significantly different between the HCF and HC diets (3369 ± 46 s vs 3398 ± 48 s; p = 0.39), nor were reaction times to the attention task and VOCs (p = NS for both). In conclusion, the short-term intake of a lipid supplement in combination with a glycogen-loading diet designed to boost intramyocellular lipids while avoiding fat adaptation did not alter substrate oxidation during exercise or 1-hour cycling performance.
Resumo:
Endothermic animals vary in their physiological ability to maintain a constant body temperature. Since melanin-based coloration is related to thermoregulation and energy homeostasis, we predict that dark and pale melanic individuals adopt different behaviours to regulate their body temperature. Young animals are particularly sensitive to a decrease in ambient temperature because their physiological system is not yet mature and growth may be traded-off against thermoregulation. To reduce energy loss, offspring huddle during periods of cold weather. We investigated in nestling barn owls (Tyto alba) whether body temperature, oxygen consumption and huddling were associated with melanin-based coloration. Isolated owlets displaying more black feather spots had a lower body temperature and consumed more oxygen than those with fewer black spots. This suggests that highly melanic individuals display a different thermoregulation strategy. This interpretation is also supported by the finding that, at relatively low ambient temperature, owlets displaying more black spots huddled more rapidly and more often than those displaying fewer spots. Assuming that spot number is associated with the ability to thermoregulate not only in Swiss barn owls but also in other Tytonidae, our results could explain geographic variation in the degree of melanism. Indeed, in the northern hemisphere, barn owls and allies are less spotted polewards than close to the equator, and in the northern American continent, barn owls are also less spotted in colder regions. If melanic spots themselves helped thermoregulation, we would have expected the opposite results. We therefore suggest that some melanogenic genes pleiotropically regulate thermoregulatory processes.
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
Pohjois-Savossa seurattiin talviaikaista happitilannetta vuosina 1997-2008. Seurannan kohteena oli neljä pienehköä järveä (Iso-Valkeinen, Kevätön, Kolmisoppi ja Vehmasjärvi), jotka ovat erityyppisiä syvyydeltään, rehevyystasoltaan ja humuspitoisuudeltaan. Näiden esimerkkijärvien oli tarkoitus antaa yleisemminkin viitteitä happitilanteen kehityksestä talven aikana. Alkutalven tulosten perusteella annettiin vuosittain tiedote, jossa arvioitiin happikatojen mahdollisuutta kevättalven kuluessa. Yleisöllä oli myös mahdollisuus seurata happi- ja lämpötilatuloksia Pohjois-Savon ympäristökeskuksen verkkopalvelun kautta. Hapenkulutusnopeus oli rehevimmässä seurantajärvessä kaksinkertainen verrattuna karumpiin ja syvyyden myötä ero vain korostui. Pohjanläheisessä vesikerroksessa 1 mg/l:n happipitoisuus kului karuissa järvissä noin kahdessa viikossa ja rehevässä noin kolmessa päivässä. Vuosien välinen vaihtelu oli kuitenkin hyvin suurta. Vaihtelu oli suurta myös karuissa järvissä. Veden jäätymisajankohdalla ja veden lämpötilalla on merkittävä vaikutus siihen, millainen kevättalven happitilanteesta muodostui. Seurantajärvien aineiston perusteella voidaan karkeasti arvioida, että kuukauden viivästyminen jäätymisessä tai vesipatsaan viilentyminen ennen jäätymistä asteen verran kylmemmäksi merkitsevät noin kolmanneksen korkeampaa happipitoisuutta kevättalvella. Vesipatsaan happitilanteen heikentymisen sekä ravinne- ja rautapitoisuuksien välillä todettiin vahvat yhteydet. Kaikkien järvien aineistossa happitilanteen heikkeneminen johti voimakkaimmin alusveden ammoniumtyppi-, kokonaisfosfori- ja rautapitoisuuksien kasvuun. Pitoisuusmuutokset olivat talven aikana suurimmat rehevimmässä kohdejärvessä, Kevättömässä, jossa kokonaisfosforipitoisuudet keskimäärin kymmenkertaistuivat, fosfaattifosforipitoisuudet kasvoivat keskimäärin 20-kertaisiksi ja rautapitoisuudet yli seitsenkertaisiksi.
Resumo:
PURPOSE: to compare the blood pressure and oxygen consumption (VO2) responses between pregnant and non-pregnant women, during cycle ergometer exercise on land and in water. METHODS: ten pregnant (27 to 29 weeks of gestation) and ten non-pregnant women were enrolled. Two cardiopulmonary tests were performed on a cycle ergometer (water and land) at the heart rate corresponding to VO2, over a period of 30 minutes each. Exercise measurements consisted of recording blood pressure every five minutes, and heart rate and VO2 every 20 seconds. Two-way ANOVA was used and α=0.05 (SPSS 17.0). RESULTS: there was no difference in cardiovascular responses between pregnant and non-pregnant women during the exercise. The Pregnant Group demonstrated significant differences in systolic (131.6±8.2; 142.6±11.3 mmHg), diastolic (64.8±5.9; 74.5±5.3 mmHg), and mean blood pressure (87.0±4.1; 97.2±5.7 mmHg), during water and land exercise, respectively. The Non-pregnant women Group also had a significantly lower systolic (130.5±8.4; 135.9±8.7 mmHg), diastolic (67.4±5.7; 69.0±10.1 mmHg), and mean blood pressure (88.4±4.8; 91.3±7.8 mmHg) during water exercise compared to the land one. There were no significant differences in VO2 values between water and land exercises or between pregnant and non-pregnant women. After the first five-minute recovery period, both blood pressure and VO2 were similar to pre-exercise values. CONCLUSIONS: for pregnant women with 27 to 29 weeks of gestation, water exercise at the heart rate corresponding to VO2 is physiologically appropriate. These women also present a lower blood pressure response to exercise in water than on land.